Metasurfaces (MSs) have enabled the emergence of new ideas and solutions in the design of antennas and for the control of electromagnetic waves. In this work, we propose to design a directional high-gain reconfigurable planar antenna based on a phase-modulated metasurface. Reconfigurability is achieved by integrating varactor diodes into the elementary meta-atoms composing the metasurface. As a proof of concept, a metasurface prototype that operates around 5 GHz is designed and fabricated to be tested in an antenna configuration. The metasurface is flexibly controlled by different bias voltages applied to the varactor diodes, thus allowing the user to control its phase characteristics. By assigning judiciously calculated phase profiles to the metasurface illuminated by a feeding primary source, different scenarios of far-field patterns can be considered. Different phase profiles are tested, allowing us to, firstly, achieve a highly directive boresight radiation and, secondly, to steer the main radiated beam towards an off-normal direction. The whole design process is verified by numerical simulations and is validated experimentally by far-field antenna measurements. The proposed metasurface enables the design of directive flat antennas with beam-scanning characteristics without complex feeding systems and power-consuming phase shifters, and thus provides potential interests for next generation antenna hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.