In this paper, we introduce a new property of two‐dimensional integrable hydrodynamic chains—existence of infinitely many local three‐dimensional conservation laws for pairs of integrable two‐dimensional commuting flows. Infinitely many local three‐dimensional conservation laws for the Benney commuting hydrodynamic chains are constructed. As a by‐product, we established a new method for computation of local conservation laws for three‐dimensional integrable systems. The Mikhalëv equation and the dispersionless limit of the Kadomtsev‐Petviashvili equation are investigated. All known local and infinitely many new quasilocal three‐dimensional conservation laws are presented. Also four‐dimensional conservation laws are considered for couples of three‐dimensional integrable quasilinear systems and for triplets of corresponding hydrodynamic chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.