In this work, the effects of the addition of biofuels belonging to different chemical families on the oxidation stability of a conventional fuel surrogate (n-decane) have been investigated. Experiments have been performed in a PetroOxy apparatus, which is one of the reference Rapid Small Scale Oxidation Test of the ASTM 7545 methods. When the pressure in the cell of the device decreases by 10% of the maximum pressure recorded, the time measured to reach this target value defines the Induction Period (IP). IP constitutes a quantitative measure of the oxidation stability of the fuel. In addition to the IP measurements for each biofuel / hydrocarbon fuel blend, organic peroxides produced in the liquid sample were quantified at the IP, using iodometric titration and ultraviolet-visible spectrophotometry.Different oxygenated biofuels have been studied in this work: diethyl ether, n-butanol, and cyclopentanone. Cyclohexane addition has also been considered to probe the effects of a non-oxygenated additive. For each type of biofuel, the proportion added to n-decane, the surrogate fuel, was varied from 0.2 to 20%vol. For each blend, the IP and the total peroxide content in the liquid have been systematically measured.This study demonstrates an unexpected diversity of the effects of oxygenates biofuels: n-butanol strongly enhances the oxidation stability of the surrogate fuel (up to a factor of 6) while diethyl ether and cyclopentanone decrease the stability of n-decane. The experimental results show also that variations in the proportions of biofuel additives lead to non-linear variations in the measured IPs. Organic peroxide measurements confirmed that a similar reaction mechanism underpins the oxidation of all the biofuel/fuel surrogate blends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.