In the current era of the internet, where social media platforms are easily accessible for everyone, people often have to deal with threats, identity attacks, hate, and bullying due to their association with a cast, creed, gender, religion, or even acceptance or rejection of a notion. Existing works in hate speech detection primarily focus on individual comment classification as a sequence labelling task and often fail to consider the context of the conversation. The context of a conversation often plays a substantial role when determining the author's intent and sentiment behind the tweet. This paper describes the system proposed by team MIDAS-IIITD for HASOC 2021 subtask 2, one of the first shared tasks focusing on detecting hate speech from Hindi-English code-mixed conversations on Twitter. We approach this problem using neural networks, leveraging the transformer's cross-lingual embeddings and further finetuning them for low-resource hate-speech classification in transliterated Hindi text. Our best performing system, a hard voting ensemble of Indic-BERT, XLM-RoBERTa, and Multilingual BERT, achieved a macro F1 score of 0.7253, placing us 1 𝑠𝑡 on the overall leaderboard standings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.