This article discusses an express control method that allows in situ measurements of the thermal conductivity of insulation materials. Three samples of the most common thermal insulation materials, such as polyurethane, extruded polystyrene, and expanded polystyrene, were studied. Additionally, optical and organic glasses were investigated as materials with a stable value of thermal conductivity. For the measurement of thermal conductivity, the express control device, which implements the differential method of local heat influence, was used. The case studies were focused on the reduction of fluctuations of the measured signals caused by different influencing factors using wavelet transform. The application of wavelet transform for data processing decreased the thermal conductivity measurement’s relative error for organic glass SOL and optical glasses TF-1 and LK-5. The application of wavelet transform thermal conductivity measurement data for polyurethane, extruded polystyrene, and expanded polystyrene allowed to reduce twice the duration of express control while maintaining the same level of measurement error. The results of the investigation could be used to increase the accuracy in express control of the thermal conductivity of insulation materials by improving the data processing. This approach could be implemented in software and does not require a change in the design of the measuring equipment or the use of additional tools.
Diagnostics of pulverized coal combustion can be carried out in the field of process monitoring and analysis of measurement data. The information about changes in the flame is presented in the form of time series, which can be analyzed in the time and frequency domain. The paper presents an analysis of signals of changes in the intensity of the flame glow during pulverized coal combustion using power spectral density. On the basis of the periodograms determined using the Welch method, it was possible to determine the frequency components present in the signal.
When evaluating the energy efficiency of buildings and implementing the necessary measures to increase energy efficiency levels, thermal technical characteristics are determined. For this purpose, in situ measurements of the thermal resistance of external enclosing structures were carried out. One of the methods most often used by researchers is the non-destructive method—the heat flow meter (HFM) method regulated by ISO 9869. In the case of surveying a building with a high level of thermal resistance, researchers are faced with low-density heat flux measurements, which is always a difficult task due to significant fluctuations and the influence of external factors on the measurement results. This is due to the fact that it is difficult to determine what is a useful signal and what is a consequence of the effects of non-stationarity and heat transfer conditions. The article provides an example of low-density heat flux measurements when determining the thermal resistance of a building and proposes a data pre-processing procedure that allows for the reduction of heat flux fluctuations, which has a significant impact on the final result at low density. The proposed use of wavelet analysis in the pre-processing of low-density heat flux measurement data makes it possible to reconstruct them or reduce disturbances that occur during research. A comparison of the obtained results with the results of the calculation according to ISO 9869-1 showed a decrease in the standard deviation of the measurements from 5.74 to 2.81%. The results of this study can be used to reduce the noise of low-density heat flux and, as a result, reduce the standard deviation of the measurement when applying the HFM method of determining the thermal resistance of external enclosing structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.