Recent achievements in plant microRNA (miRNA), a large class of small and non-coding RNAs, are very exciting. A wide array of techniques involving forward genetic, molecular cloning, bioinformatic analysis, and the latest technology, deep sequencing have greatly advanced miRNA discovery. A tiny miRNA sequence has the ability to target single/multiple mRNA targets. Most of the miRNA targets are transcription factors (TFs) which have paramount importance in regulating the plant growth and development. Various families of TFs, which have regulated a range of regulatory networks, may assist plants to grow under normal and stress environmental conditions. This present review focuses on the regulatory relationships between miRNAs and different families of TFs like; NF-Y, MYB, AP2, TCP, WRKY, NAC, GRF, and SPL. For instance NF-Y play important role during drought tolerance and flower development, MYB are involved in signal transduction and biosynthesis of secondary metabolites, AP2 regulate the floral development and nodule formation, TCP direct leaf development and growth hormones signaling. WRKY have known roles in multiple stress tolerances, NAC regulate lateral root formation, GRF are involved in root growth, flower, and seed development, and SPL regulate plant transition from juvenile to adult. We also studied the relation between miRNAs and TFs by consolidating the research findings from different plant species which will help plant scientists in understanding the mechanism of action and interaction between these regulators in the plant growth and development under normal and stress environmental conditions.
SummaryPlants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology.
Agarwood is a resinous part of the non-timber Aquilaria tree, which is a highly valuable product for medicine and fragrance purposes. To protect the endangered Aquilaria species, mass plantation of Aquilaria trees has become a sustainable way in Asian countries to obtain the highly valuable agarwood. As only physiologically triggered Aquilaria tree can produce agarwood, effective induction methods are long sought in the agarwood industry. In this paper, we attempt to provide an overview for the past efforts toward the understanding of agarwood formation, the evolvement of induction methods and their further development prospects by integrating it with high-throughput omics approaches.
We performed DNA analysis using cord blood samples on 86 male Malay neonates diagnosed as G6PD deficiency in the National University of Malaysia Hospital by a combination of rapid PCR-based techniques, single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing. We found 37.2% were 871G>A (G6PD Viangchan), 26.7% were nt 563 C>T (G6PD Mediterranean) and 15.1% were 487G>A (G6PD Mahidol) followed by 4.7% 1376G>T (G6PD Canton), 3.5% 383T>C (G6PD Vanua Lava), 3.5% 592C>T (G6PD Coimbra), 2.3% 1388G>A (G6PD Kaiping), 2.3% 1360C>T (G6PD Union), 2.3% 1003G>A (G6PD Chatham), 1.2% 131C>G (G6PD Orissa) and 1.2% 1361G>A (G6PD Andalus). Seventy-one (82.6%) of the 86 G6PD-deficient neonates had neonatal jaundice. Fifty seven (80%) of the 71 neonates with jaundice required phototherapy with only one neonate progressing to severe hyperbilirubinemia (serum bilirubin >340 micromol/l) requiring exchange transfusion. There was no significant difference in the incidence of neonatal jaundice, mean serum bilirubin level, mean age for peak serum bilirubin, percentage of babies requiring phototherapy and mean number of days of phototherapy between the three common variants. In conclusion, the molecular defects of Malay G6PD deficiency is heterogeneous and G6PD Viangchan, Mahidol and Mediterranean account for at least 80% of the cases. Our findings support the observation that G6PD Viangchan and Mahidol are common Southeast Asian variants. Their presence in the Malays suggests a common ancestral origin with the Cambodians, Laotians and Thais. Our findings together with other preliminary data on the presence of the Mediterranean variant in this region provide evidence of strong Arab influence in the Malay Archipelago.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.