MicroRNAs (miRNAs) are critical regulators of the functional pathways involved in the pathogenesis of cardiovascular diseases. Understanding of the disease-associated alterations in tissue and plasma will elucidate the roles of miRNA in modulation of gene expression throughout development of sporadic non-syndromic ascending thoracic aortic aneurysm (TAA). This will allow one to propose relevant biomarkers for diagnosis or new therapeutic targets for the treatment. The high-throughput sequencing revealed 20 and 17 TAA-specific miRNAs in tissue and plasma samples, respectively. qRT-PCR analysis in extended cohort revealed sex-related differences in miR-10a-5p, miR-126-3p, miR-155-5p and miR-148a-3p expression, which were the most significantly dysregulated in TAA tissues of male patients. Unexpectedly, the set of aneurysm-related miRNAs in TAA plasma did not resemble the tissue signature suggesting more complex organism response to the disease. Three of TAA-specific plasma miRNAs were found to be restored to normal level after aortic surgery, further signifying their relationship to the pathology. The panel of two plasma miRNAs, miR-122-3p, and miR-483-3p, could serve as a potential biomarker set (AUC = 0.84) for the ascending TAA. The miRNA-target enrichment analysis exposed TGF-β signaling pathway as sturdily affected by abnormally expressed miRNAs in the TAA tissue. Nearly half of TAA-specific miRNAs potentially regulate a key component in TGF-β signaling: TGF-β receptors, SMADs and KLF4. Indeed, using immunohistochemistry analysis we detected increased KLF4 expression in 27% of TAA cells compared to 10% of non-TAA cells. In addition, qRT-PCR demonstrated a significant upregulation of ALK1 mRNA expression in TAA tissues. Overall, these observations indicate that the alterations in miRNA expression are sex-dependent and play an essential role in TAA via TGF-β signaling.
Although treatment of colorectal cancer with 5-florouracil and oxaliplatin is widely used, it is frequently followed by a relapse. Therefore, there is an urgent need for profound understanding of chemotherapy resistance mechanisms as well as the profiling of predictive markers for individualized treatment. In this study, we identified the changes in 14 miRNAs in 5-fluouracil and 40 miRNAs in oxaliplatin-resistant cell lines by miRNA sequencing. The decrease in miR-224-5p expression in the 5-fluorouracil-resistant cells correlated with drug insensitivity due to its overexpression-induced drug-dependent apoptosis. On the other hand, the miR-23b/27b/24-1 cluster was overexpressed in oxaliplatin-resistant cells. The knockout of miR-23b led to the partial restoration of oxaliplatin susceptibility, showing the essential role of miR-23b in the development of drug resistance by this cluster. Proteomic analysis identified target genes of miR-23b and showed that endothelial–mesenchymal transition (EMT) was implicated in oxaliplatin insensibility. Data revealed that EMT markers, such as vimentin and SNAI2, were expressed moderately higher in the oxaliplatin-resistant cells and their expression increased further in the less drug-resistant cells, which had miR-23b knockout. This establishes that the balance of EMT contributes to the drug resistance, showing the importance of the miR-23b-mediated fine-tuning of EMT in oxaliplatin-resistant cancer cells.
Sequence-based characterization of bacterial communities has long been a hostage of limitations of both 16S rRNA gene and whole metagenome sequencing. Neither approach is universally applicable, and the main efforts to resolve constraints have been devoted to improvement of computational prediction tools. Here, we present semi-targeted 16S rRNA sequencing (st16S-seq), a method designed for sequencing V1–V2 regions of the 16S rRNA gene along with the genomic locus upstream of the gene. By in silico analysis of 13 570 bacterial genome assemblies, we show that genome-linked 16S rRNA sequencing is superior to individual hypervariable regions or full-length gene sequences in terms of classification accuracy and identification of gene copy numbers. Using mock communities and soil samples we experimentally validate st16S-seq and benchmark it against the established microbial classification techniques. We show that st16S-seq delivers accurate estimation of 16S rRNA gene copy numbers, enables taxonomic resolution at the species level and closely approximates community structures obtainable by whole metagenome sequencing.
The ever-growing demand for inexpensive, rapid, and accurate exploration of genomes calls for refinement of existing sequencing techniques. The development of next-generation sequencing (NGS) was a revolutionary milestone in genome analysis. While modified nucleotides already were inherent tools in sequencing and imaging, further modification of nucleotides enabled the expansion into even more diverse applications. Herein we describe the design and synthesis of oligonucleotide-tethered 2′,3′-dideoxynucleotide (ddONNTP) terminators bearing universal priming sites attached to the nucleobase, as well as their enzymatic incorporation and performance in read-through assays. In the context of NGS library preparation, the incorporation of ddONNTP fulfills two requirements at once: the fragmentation step is integrated into the workflow and the obtained fragments are readily labeled by platform-specific adapters. DNA polymerases can incorporate ddONNTP nucleotides, as shown by primer extension assays. More importantly, reading through the unnatural linkage during DNA synthesis was demonstrated, with 25-30% efficiency in single-cycle extension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.