MicroRNAs (miRNAs), a class of small, non-coding RNA molecules with gene regulatory functions, have emerged to play a critical role in the pathogenesis of a variety of diseases. Recently, circulating miRNAs have been reported as potential biomarkers for various pathologic conditions. The present study was performed to investigate the potential role of circulating miRNAs as diagnostic biomarkers for mild cognitive impairment (MCI). We collected 66 patients with MCI and 76 normal controls from our previous cross-sectional cohort study. Seven miRNAs (miR-206, miR-132, miR-193b, miR-130b, miR-20a, miR-296, and miR-329) related to Alzheimer's disease (AD) were detected in serum using a quantitative real-time PCR (qRT-PCR) method. Each miRNA's diagnostic performance was evaluated by receiver operating characteristic curves and the areas under curves (AUC) analysis. The levels of miR-206 and miR-132 in MCI patients' serum were significantly elevated compared to normal controls. Combining detection of miR-206 and miR-132 achieved the highest AUC of 0.981, followed by test of miR-206 (AUC = 0.880) and miR-132 (AUC = 0.912) separately. Importantly, miR-206 and miR-132 were respectively correlated with the Montreal Cognitive Assessment score in MCI patients. These results preliminarily indicated that circulating miR-206 and miR-132 as novel miRNAs upregulated in MCI patient were potential biomarkers for diagnosis of MCI.
MicroRNAs play critical roles in the development and progression of colorectal cancer (CRC). miR-154 acts as a tumor suppressor in several tumors; however, its role in CRC is poorly understood. Herein, we found that miR-154 was decreased in CRC tissues and cell lines. Ectopic expression of miR-154 remarkably suppressed cell proliferation and colony formation, migration and invasion in CRC cells. The toll-like receptor 2 (TLR2) was found to be a direct target of miR-154 in CRC cells. Inhibition of TLR2 performed similar effects with miR-154 overexpression on CRC cells, and overexpression of TLR2 could significantly reverse the tumor suppressive effects of miR-154 on CRC cells. This study suggests an essential role for miR-154 in CRC.
Evidence suggests that individuals with amnestic mild cognitive impairment (aMCI) tend to progress to probable Alzheimer's disease (AD) with aging. This study was performed to examine whether circulating miRNAs could be potential predictors for the progression of aMCI to AD. A total of 458 patients with aMCI were included in this study, and the clinical data were collected at two time points: the baseline and the follow-up assessment. These aMCI patients were classified into two groups after 5 years: aMCI-stable group (n = 330) and AD-conversion group (n = 128). The expression of miR-206 and miR-132 and the levels of BDNF and SIRT1 in serum were detected using a quantitative real-time RT-PCR (qPCR) and the ELISA method, respectively. Kaplan-Meier method (Log-rank test) was used for univariate survival analysis. Cox proportional hazard model was used to estimate the prognostic value of miRNAs in conversion from aMCI to AD. At the baseline, serum levels of miR-206 in aMCI-AD group were significantly elevated compared to aMCI-aMCI group and the same trend was found at 5-year follow-up time point as well. There were no significant differences in serum levels of miR-132 between the conversion and non-conversion group at both time points. Kaplan-Meier analysis showed significant correlation between AD conversion and higher serum levels of miR-206 for aMCI patients (HR = 3.60, 95% CI: 2.51- 5.36, p < 0.001). Multivariate Cox regression analysis revealed that serum miR-206 and its target BDNF were significant independent predictors for AD conversion (HR = 4.22, p < 0.001). These results suggested that increased serum miR-206 level might be a potential predictor of conversion from aMCI to AD.
Epigenetic aberrations have been identified as biomarkers to predict the risk of Alzheimer's disease (AD). This study aimed to evaluate whether altered DNA methylation status of BDNF promoter could be used as potential epigenetic biomarkers for predicting the progression from amnestic mild cognitive impairment (aMCI) to AD. A total of 506 aMCI patients and 728 cognitively normal controls were recruited in the cross-sectional analyses. Patients (n = 458) from aMCI cohort were classified into two groups after 5-year follow-up: aMCI-stable group (n = 330) and AD-conversion group (n = 128). DNA methylation of BDNF promoter was detected by bisulfite-PCR amplification and pyrosequencing. The DNA methylation levels of CpG1 and CpG2 in promoter I and CpG5 and CpG6 in promoter IV of BDNF gene were significantly higher in the aMCI group than in the control group at baseline and also were increased in the conversion group compared with the non-conversion group at 5-year follow up time point. CpG5 in BDNF promoter IV had the highest AUC of 0.910 (95% CI: 0.817-0.983, p < 0.05). Kaplan-Meier analysis showed a significant AD conversion propensity for aMCI patients with high methylation levels of CpG5 (HR = 1.96, 95% CI: 1.07-2.98, p < 0.001). Multivariate Cox regression analysis revealed elevated methylation status of CpG5 was a significant independent predictor for AD conversion (HR = 3.51, p = 0.013). These results suggest that elevation of peripheral BDNF promoter methylation might be used as potential epigenetic biomarkers for predicting the conversion from aMCI to AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.