Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.
We present a novel combinatorial problem that arises from mathematical biology. In order to understand the dynamics of models of gene regulatory networks over a parameter space, a problem of constructing linear extensions of a partial order with algebraic constraints arises naturally. We formulate the problem for a class of algebraic constraints related to the form of nonlinearities in the gene regulation model. We provide an algorithm that partially solves the problem. We formulate a conjecture on the special role of additive constraints in the class of all considered constraints. We present several examples where we show that the number of solutions is much smaller than the number of unconstrained linear extensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.