Significance: Infrared neural stimulation (INS) utilizes pulsed infrared light to selectively elicit neural activity without exogenous compounds. Despite its versatility in a broad range of biomedical applications, no comprehensive comparison of factors pertaining to the efficacy and safety of INS such as wavelength, radiant exposure, and optical spot size exists in the literature.
Often times erosion, corrosion, and fouling by scale deposition are primary issues for geothermal-fluid-wetted process equipment. In particular, wet heat exchangers used in geothermal power plants must deal with scale deposition. Previously, a surface-coating of polytetrafluoroethylene (PTFE) was considered to provide a non-stick surface. However, intrinsically poor thermal conductivity of PTFE, along with its poor abrasion resistance and weak adhesion to metal substrate, turns out to be a serious concern for engineering use. In this paper, we report a fine-tuned nano-composite by incorporating PTFE/Carbon-nanotube (CNT) into the polyphenylene surfide (PPS) host matrix. PPS is a thermoplastic polymer exhibiting outstanding high-temperature stability, excellent flame resistance, and good chemical resistance. By adding PTFE/CNTs into a PPS matrix, a superhydrophobic surface can also be created by contemplating the chemical composition of the surface material and the cooperative effect of nano-micro structures at the surface. Furthermore, carefully engineered superhydrophobic surfaces can create so-called “dropwise condensation [1]” which can dramatically enhance steam condensation heat transfer. We report the performance results of such nanocomposites regarding steam condensation, along with other surface characteristics. It is our anticipation that, with proper treatment, PTFE/CNT blended PPS can be widely adopted for use in high performance heat exchangers in geothermal industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.