Neutrophils are recruited to sites of injury but their timely removal is thought to be vital to prevent exacerbating inflammation. In addition, the recognition of apoptotic cells by cells of the innate immune system provides potent anti-inflammatory and anti-immunogenic signals. In this paper we describe how human neutrophils dying by apoptosis or necrosis release anti-inflammatory peptides, the alpha defensins. This family of small cationic peptides, effectively inhibits the secretion of multiple pro-inflammatory cytokines and nitric oxide from macrophages, the main innate immune cell found at sites of chronic inflammation. In addition, the systemic administration of necrotic neutrophil supernatants and alpha defensins protects mice from a murine model of peritonitis. Hence their effects may be far reaching and serve to kill microbes whilst regulating a potentially tissue destructive inflammatory response.
Intracellular protein complexes containing nucleic acids are common targets of autoantibodies in many autoimmune diseases. Central tolerance to these antigens is incomplete, yet nucleosomal DNA is expressed on the surface of cells dying by apoptosis. It is commonly believed that autoimmunity is prevented by the rapid uptake of apoptotic cells (ACs) by neighbors or professional phagocytes to which they deliver anti-inflammatory signals. Self-reactive, innate-like B cells contact and are selected by intracellular antigens expressed on ACs; however, how self-tolerance is maintained is not well understood. Here we report that IL-10 production by B cells, stimulated by contact with ACs, results from the engagement of Toll-like receptor 9 (TLR9) within the B cell after recognition of DNA-containing complexes on the surface of ACs. Until now, TLR9 ligation has been considered an inflammatory signal, but we have confirmed a hitherto unexpected immunoregulatory role by demonstrating the absence of the protective effect of ACs during experimental autoimmune encephalitis (EAE) in TLR9-deficient mice. Human circulating CD27 + B cells also respond to DNA-bearing ACs, but not to DNase-treated cells, by secreting IL-10. Chronic autoimmune disease may arise if this tolerance mechanism is not reimposed after episodes of inflammation, or if the regulatory B-cell response is subverted.
BackgroundRecent clinical studies show that tyrosine kinase inhibitors slow the rate of lung function decline and decrease the number of acute exacerbations in patients with Idiopathic Pulmonary Fibrosis (IPF). However, in the murine bleomycin model of fibrosis, not all tyrosine kinase signaling is detrimental. Exogenous ligands Fibroblast Growth Factor (FGF) 7 and 10 improve murine lung repair and increase survival after injury via tyrosine kinase FGF receptor 2b-signaling. Therefore, the level and location of FGF/FGFR expression as well as the exogenous effect of the most highly expressed FGFR2b ligand, FGF1, was analyzed on human lung fibroblasts.MethodsFGF ligand and receptor expression was evaluated in donor and IPF whole lung homogenates using western blotting and qPCR. Immunohistochemistry for FGF1 and FGFR1/2/3/4 were performed on human lung tissue. Lastly, the effects of FGF1, a potent, multi-FGFR ligand, were studied on primary cultures of IPF and non-IPF donor fibroblasts. Western blots for pro-fibrotic markers, proliferation, FACS for apoptosis, transwell assays and MetaMorph analyses on cell cultures were performed.ResultsWhole lung homogenate analyses revealed decreased FGFR b-isoform expression, and an increase in FGFR c-isoform expression. Of the FGFR2b-ligands, FGF1 was the most significantly increased in IPF patients; downstream targets of FGF-signaling, p-ERK1/2 and p-AKT were also increased. Immunohistochemistry revealed FGF1 co-localization within basal cell sheets, myofibroblast foci, and Surfactant protein-C positive alveolar epithelial type-II cells as well as co-localization with FGFR1, FGFR2, FGFR3, FGFR4 and myofibroblasts expressing the migratory marker Fascin. Both alone and in the presence of heparin, FGF1 led to increased MAPK-signaling in primary lung fibroblasts. While smooth muscle actin was unchanged, heparin + FGF1 decreased collagen production in IPF fibroblasts. In addition, FGF1 + heparin increased apoptosis and cell migration. The FGFR inhibitor (PD173074) attenuated these effects.ConclusionsStrong expression of FGF1/FGFRs in pathogenic regions of IPF suggest that aberrant FGF1-FGFR signaling is increased in IPF patients and may contribute to the pathogenesis of lung fibrosis by supporting fibroblast migration and increased MAPK-signaling.Electronic supplementary materialThe online version of this article (doi:10.1186/s12931-015-0242-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.