Background. This paper presents the study concerning hot-spot selection in the assessment of whole slide images of tissue sections collected from meningioma patients. The samples were immunohistochemically stained to determine the Ki-67/MIB-1 proliferation index used for prognosis and treatment planning. Objective. The observer performance was examined by comparing results of the proposed method of automatic hot-spot selection in whole slide images, results of traditional scoring under a microscope, and results of a pathologist's manual hot-spot selection. Methods. The results of scoring the Ki-67 index using optical scoring under a microscope, software for Ki-67 index quantification based on hot spots selected by two pathologists (resp., once and three times), and the same software but on hot spots selected by proposed automatic methods were compared using Kendall's tau-b statistics. Results. Results show intra- and interobserver agreement. The agreement between Ki-67 scoring with manual and automatic hot-spot selection is high, while agreement between Ki-67 index scoring results in whole slide images and traditional microscopic examination is lower. Conclusions. The agreement observed for the three scoring methods shows that automation of area selection is an effective tool in supporting physicians and in increasing the reliability of Ki-67 scoring in meningioma.
The paper presents a combined method for an automatic hot-spot areas selection based on penalty factor in the whole slide images to support the pathomorphological diagnostic procedure. The studied slides represent the meningiomas and oligodendrogliomas tumor on the basis of the Ki-67/MIB-1 immunohistochemical reaction. It allows determining the tumor proliferation index as well as gives an indication to the medical treatment and prognosis. The combined method based on mathematical morphology, thresholding, texture analysis and classification is proposed and verified. The presented algorithm includes building a specimen map, elimination of hemorrhages from them, two methods for detection of hot-spot fields with respect to an introduced penalty factor. Furthermore, we propose localization concordance measure to evaluation localization of hot spot selection by the algorithms in respect to the expert's results. Thus, the results of the influence of the penalty factor are presented and discussed. It was found that the best results are obtained for 0.2 value of them. They confirm effectiveness of applied approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.