Prescriptive maintenance has recently attracted a lot of scientific attention. It integrates the advantages of descriptive and predictive analytics to automate the process of detecting non nominal device functionality. Implementing such proactive measures in home or industrial settings may improve equipment dependability and minimize operational expenses. There are several techniques for prescriptive maintenance in diverse use cases, but none elaborates on a general methodology that permits successful prescriptive analysis for small size industrial or residential settings. This study reports on prescriptive analytics, while assessing recent research efforts on multi-domain prescriptive maintenance. Given the existing state of the art, the main contribution of this work is to propose a broad framework for prescriptive maintenance that may be interpreted as a high-level approach for enabling proactive buildings.
Anomaly detection is concerned with identifying rare events/ observations that differ substantially from the majority of the data. It is considered an important task in the energy sector to enable the identification of non-standard device conditions. The use of anomaly detection techniques in small-scale residential and industrial settings can provide useful insights about device health, maintenance requirements, and downtime, which in turn can lead to lower operating costs. There are numerous approaches for detecting anomalies in a range of application scenarios such as prescriptive appliance maintenance. This work reports on anomaly detection using a data set of fridge power consumption that operates on a near zero energy building scenario. We implement a variety of machine and deep learning algorithms and evaluate performances using multiple metrics. In the light of the present state of the art, the contribution of this work is the development of a inference pipeline that incorporates numerous methodologies and algorithms capable of producing high accuracy results for detecting appliance failures.
The diffusion of domotics solutions and of smart appliances and meters enables the monitoring of energy consumption at a very fine level and the development of forecasting and diagnostic applications. Anomaly detection (AD) in energy consumption data streams helps identify data points or intervals in which the behavior of an appliance deviates from normality and may prevent energy losses and break downs. Many statistical and learning approaches have been applied to the task, but the need remains of comparing their performances with data sets of different characteristics. This paper focuses on anomaly detection on quasi-periodic energy consumption data series and contrasts 12 statistical and machine learning algorithms tested in 144 different configurations on 3 data sets containing the power consumption signals of fridges. The assessment also evaluates the impact of the length of the series used for training and of the size of the sliding window employed to detect the anomalies. The generalization ability of the top five methods is also evaluated by applying them to an appliance different from that used for training. The results show that classical machine learning methods (Isolation Forest, One-Class SVM and Local Outlier Factor) outperform the best neural methods (GRU/LSTM autoencoder and multistep methods) and generalize better when applied to detect the anomalies of an appliance different from the one used for training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.