An accurate vehicle driving state observer is a necessary condition for a safe automotive electronic control system. Vehicle driving state observer is challenged by unknown measurement noise and transient disturbances caused by complex working conditions and sensor failure. For the classical adaptive unscented Kalman filter (AUKF) algorithm, transient disturbances will cause the failure of state estimation and affect the subsequent process. This paper proposes an AUKF based on a modified Sage–Husa filter and divergence calculation technique for multi-dimensional vehicle driving state observation. Based on the seven-degrees-of-freedom vehicle model and the Dugoff tire model, the proposed algorithm corrects the measurement noise by using modified Sage–Husa maximum posteriori. To reduce the influence of transient disturbance on the subsequent process, covariance matrix is updated after divergence is detected. The effectiveness of the algorithm is tested on the double lane change and Sine Wave road conditions. The robustness of the algorithm is tested under severe transient disturbance. The results demonstrate that the modified Sage–Husa UKF algorithm can accurately detect transient disturbance and effectively reduce the resulted accumulated error. Compared to classical AUKF, our algorithm significantly improves the accuracy and robustness of vehicle driving state estimation. The research in this paper provides a reference for multi-dimensional data processing under changeable vehicle driving states.
Distracted driving is currently a global issue causing fatal traffic crashes and injuries. Although deep learning has achieved significant success in various fields, it still faces the trade-off between computation cost and overall accuracy in the field of distracted driving behavior recognition. This paper addresses this problem and proposes a novel lightweight attention-based (LWANet) network for image classification tasks. To reduce the computation cost and trainable parameters, we replace standard convolution layers with depthwise separable convolutions and optimize the classic VGG16 architecture by 98.16% trainable parameters reduction. Inspired by the attention mechanism in cognitive science, a lightweight inverted residual attention module (IRAM) is proposed to simulate human attention, extract more specific features, and improve the overall accuracy. LWANet achieved an accuracy of 99.37% on Statefarm’s dataset and 98.45% on American University in Cairo’s dataset. With only 1.22 M trainable parameters and a model file size of 4.68 MB, the quantitative experimental results demonstrate that the proposed LWANet obtains state-of-the-art overall performance in deep learning-based distracted driving behavior recognition.
With the increasing popularity of artificial intelligence, deep learning has been applied to various fields, especially in computer vision. Since artificial intelligence is migrating from cloud to edge, deep learning nowadays should be edge-oriented and adaptive to complex environments. Aiming at these goals, this paper proposes an ICONet (illumination condition optimized network). Based on OTSU segmentation algorithm and fuzzy c-means clustering algorithm, the illumination condition classification subnet increases the environmental adaptivity of our network. The reduced time complexity and optimized size of our convolutional neural network (CNN) model enables the implementation of ICONet on edge devices. In the field of fatigue driving, we test the performance of ICONet on YawDD and self-collected datasets. Our network achieves a general accuracy of 98.56% and our models are about 590 kilobytes. Compared to other proposed networks, the ICONet shows significant success and superiority. Applying ICONet to fatigue driving detection is helpful to solve the symmetry of the needs of edge-oriented detection under complex illumination condition environments and the scarcity of related approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.