This study investigated the occurrence of nine pharmaceuticals (amoxicillin, caffeine, chloramphenicol, ciprofloxacin, dexamethasone, diclofenac, nitrofurazone, sulfamethoxazole, and triclosan) and to evaluate potential risks (human health and ecotoxicological) in Lui, Gombak and Selangor (Malaysia) rivers using commercial competitive Enzyme-Linked Immunosorbent Assay (ELISA) kit assays. Physicochemical properties of these rivers showed the surface samples belong to Class II of Malaysian National Water Quality Standards which requires conventional treatment before consumption. All the pharmaceuticals were detected in all three rivers except for triclosan, dexamethasone and diclofenac which were not detected in few of sampling locations in these three rivers. Highest pharmaceutical concentrations were detected in Gombak river in line of being as one of the most polluted rivers in Malaysia. Ciprofloxacin concentrations were detected in all the sampling locations with the highest at 299.88 ng/L. While triclosan, dexamethasone and diclofenac concentrations were not detected in a few of sampling locations in these three rivers. All these nine pharmaceuticals were within the levels reported previously in literature. Pharmaceutical production, wastewater treatment technologies and treated sewage effluent were found as the potential sources which can be related with pharmaceuticals occurrence in surface water samples. Potential human risk assessment showed low health risk except for ciprofloxacin and dexamethasone. Instead, ecotoxicological risk assessment indicated moderate risks were present for these rivers. Nevertheless, results confirmation using instrumental techniques is needed for higher degree of specificity. It is crucial to continuously monitor the surface water bodies for pharmaceuticals using a cost-effective prioritisation approach to assess sensitive sub-populations risk.
Rice ingestion is one of the major pathways for heavy metal bioaccumulation in human. This study aimed to measure the heavy metal content of paddy soils and its bioavailability in paddy grain in order to assess the health risk. In total, 10 rice samples (50 g each) of paddy plants were harvested from the Selangor and Terengganu areas of Malaysia to assess the bioavailability of heavy metal (As, Cd, Cu, Cr, and Pb) using the in vitro digestion model of Rijksinstituut voor Volksgezondheid en Milieu. The bioavailability of heavy metal concentrations in rice samples were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The findings showed the bioavailability of heavy metal concentrations was decreased in the order Cr > Cu > Pb > As > Cd. Chromium was found to be the most abundant bioavailable heavy metal in cooked rice, which was the result of its high content in paddy soil. Hazard Quotient values for the bioavailability of the heavy metal studied were less than one indicating no non-carcinogenic health risks for adults and children. Meanwhile, the total Lifetime Cancer Risk exceeded the acceptable value showing a potential of carcinogenic health risk for both adults and children. The application of in vitro digestion model in assessing bioavailability of heavy metal produces a more realistic estimation of human health risks exposure. However, a regular monitoring of pollution in Selangor and Terengganu areas is crucial since the exposure of heavy metals through rice consumption poses the potential non-carcinogenic and carcinogenic health risk to the local residents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.