The maternal segmentation coordinate gene bicoid plays a significant role during Drosophila embryogenesis. The gradient of Bicoid, the protein encoded by this gene, determines most aspects of head and thorax development. This paper seeks to explore the applicability of a variety of signal processing techniques at extracting bicoid expression signal, and whether these methods can outperform the current model. We evaluate the use of six different powerful and widely-used models representing both parametric and nonparametric signal processing techniques to determine the most efficient method for signal extraction in bicoid. The results are evaluated using both real and simulated data. Our findings show that the Singular Spectrum Analysis technique proposed in this paper outperforms the synthesis diffusion degradation model for filtering the noisy protein profile of bicoid whilst the exponential smoothing technique was found to be the next best alternative followed by the autoregressive integrated moving average.
This paper introduces an optimized Multivariate Singular Spectrum Analysis (MSSA) algorithm for identifying leading indicators. Exploiting European tourist arrivals data, we analyse cross country relations for European tourism demand. Cross country relations have the potential to aid in planning and resource allocations for future tourism demand by taking into consideration the variation in tourist arrivals across other countries in Europe. Our findings indicate with statistically significant evidence that there exists cross country relations between European tourist arrivals which can help in improving the predictive accuracy of tourism demand. We also find that MSSA has the capability of not only identifying leading indicators, but also forecasting tourism demand with far better accuracy in comparison to its univariate counterpart, Singular Spectrum Analysis.
Many scientific fields consider accurate and reliable forecasting methods as important decision-making tools in the modern age amidst increasing volatility and uncertainty. As such there exists an opportune demand for theoretical developments which can result in more accurate forecasts. Inspired by Colonial Theory, this paper seeks to bring about considerable improvements to the field of time series analysis and forecasting by identifying certain core characteristics of Colonial Theory which are subsequently exploited in introducing a novel approach for the grouping step of subspace based methods. The proposed algorithm shows promising results in terms of improved performances in noise filtering and forecasting of time series. The reliability and validity of the proposed algorithm is evaluated and compared with popular forecasting models with the results being thoroughly evaluated for statistical significance and thereby adding more confidence and value to the findings of this research.
It is widely believed that in Drosophila melanogaster the pattern of Bicoid protein gradient plays a crucial role in the segmentation stage of embryo development. As a result of its fundamental role, modelling the Bicoid gradient has become increasingly popular for researchers from many different areas of study. The aim of this paper is to bring together the most prominent studies on this maternal gene and discuss how existing techniques for modelling this gradient have evolved over the years.
Drosophila segmentation as a model organism is one of the most highly studied. Among many maternal segmentation coordinate genes, bicoid protein pattern plays a significant role during Drosophila embryogenesis, since this gradient determines most aspects of head and thorax development. Despite the fact that several models have been proposed to describe the bicoid gradient, due to its association with considerable error, each can only partially explain bicoid characteristics. In this paper, a modified version of singular spectrum analysis is examined for filtering and extracting the bicoid gene expression signal. The results with strong evidence indicate that the proposed technique is able to remove noise more effectively and can be considered as a promising method for filtering gene expression measurements for other applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.