Furans are promising second generation biofuels with comparable energy densities to conventional fossil fuels. Combustion of furans is initiated and controlled to a large part by reactions with OH radicals, the kinetics of which are critical to understand the processes occurring under conditions relevant to low-temperature combustion. The reactions of OH radicals with furan (OH + F, R1), 2methyl furan (OH + 2-MF, R2), and 2,5-dimethyl furan (OH + 2,5-DMF, R3) have been studied in this work over the temperature range 294 to 668 K at pressures between 5 mbar and 10 bar using laser flash photolysis coupled with laser-induced fluorescence (LIF) spectroscopy to generate and monitor OH radicals under pseudo-first-order conditions. Measurements at p ≤ 200 mbar were made in N2, using H2O2 or (CH3)3COOH radical precursors, while those at p ≥ 2 bar were made in He, using HNO3 as the radical precursor. The kinetics of the reactions R1-R3 were observed to display a negative dependence on temperature over the range investigated, indicating the dominance of addition reactions under such conditions, with no significant dependence on pressure observed. Master equation calculations are in good agreement with the observed kinetics, and a combined parameterisation of addition channels and abstraction channels for R1-R3 is provided on the basis of this work and previous shock tube measurements at higher temperatures. This work significantly extends the temperature range previously investigated for R1 and represents the first temperature-2 dependent measurements of R2 and R3 at temperatures relevant for atmospheric chemistry and lowtemperature combustion.
The UV absorption cross-sections of the Criegee intermediate CH2OO, and kinetics of the CH2OO self-reaction and the reaction of CH2OO with I are reported as a function of pressure at 298 K.
Recent, direct studies have shown that several reactions of stabilized Criegee intermediates (SCI) are significantly faster than indicated by earlier indirect measurements. The reaction of SCI with SO2 may contribute to atmospheric sulfate production, but there are uncertainties in the mechanism of the reaction of the C1 Criegee intermediate, CH2OO, with SO2. The reactions of C1, CH2OO, and C2, CH3CHOO, Criegee intermediates with SO2 have been studied by generating stabilized Criegee intermediates by laser flash photolysis (LFP) of RI2/O2 (R = CH2 or CH3CH) mixtures with the reactions being followed by photoionization mass spectrometry (PIMS). PIMS has been used to determine the rate coefficient for the reaction of CH3CHI with O2, k = (8.6 ± 2.2) × 10-12 cm3 molecule-1 s-1 at 295 K and 2 Torr (He). The yield of the C2 Criegee intermediate under these conditions is 0.86 ± 0.11. All errors in the abstract are a combination of statistical at the 1σ level and an estimated systematic contribution. For the CH2OO + SO2 reaction, additional LFP experiments were performed monitoring CH2OO by time-resolved broadband UV absorption spectroscopy (TRUVAS). The following rate coefficients have been determined at room temperature ((295 ± 2) K):CH2OO + SO2: k = (3.74 ± 0.43) × 10-11 cm3 molecule-1 s-1 (LFP/PIMS),k = (3.87 ± 0.45) × 10-11 cm3 molecule-1 s-1 (LFP/TRUVAS)CH3CHOO + SO2: k = (1.7 ± 0.3) × 10-11 cm3 molecule-1 s-1 (LFP/PIMS)LFP/PIMS also allows for the direction observation of CH3CHO production from the reaction of CH3CHOO with SO2, suggesting that SO3 is the co-product. For the reaction of CH2OO with SO2 there is no evidence of any variation in reaction mechanism with [SO2] as had been suggested in an earlier publication (Chhantyal-Pun et al., Phys. Chem. Chem. Phys., 2015, 17, 3617). A mean value of k = (3.76 ± 0.14) × 10-11 cm3 molecule-1 s-1 for the CH2OO + SO2 reaction is recommended from this and previous studies. The atmospheric implications of the results are briefly discussed.
Abstract. The chemistry and reaction kinetics of reactive species dominate changes to the composition of complex chemical systems, including Earth's atmosphere. Laboratory experiments to identify reactive species and their reaction products, and to monitor their reaction kinetics and product yields, are key to our understanding of complex systems. In this work we describe the development and characterisation of an experiment using laser flash photolysis coupled with time-resolved mid-infrared (mid-IR) quantum cascade laser (QCL) absorption spectroscopy, with initial results reported for measurements of the infrared spectrum, kinetics, and product yields for the reaction of the CH2OO Criegee intermediate with SO2. The instrument presented has high spectral (< 0.004 cm−1) and temporal (< 5 µs) resolution and is able to monitor kinetics with a dynamic range to at least 20 000 s−1. Results obtained at 298 K and pressures between 20 and 100 Torr gave a rate coefficient for the reaction of CH2OO with SO2 of (3.83 ± 0.63) × 10−11 cm3 s−1, which compares well to the current IUPAC recommendation of 3.70-0.40+0.45 × 10−11 cm3 s−1. A limit of detection of 4.0 × 10−5, in absorbance terms, can be achieved, which equates to a limit of detection of ∼ 2 × 1011 cm−3 for CH2OO, monitored at 1285.7 cm−1, based on the detection path length of (218 ± 20) cm. Initial results, directly monitoring SO3 at 1388.7 cm−1, demonstrate that SO3 is the reaction product for CH2OO + SO2. The use of mid-IR QCL absorption spectroscopy offers significant advantages over alternative techniques commonly used to determine reaction kinetics, such as laser-induced fluorescence (LIF) or ultraviolet absorption spectroscopy, owing to the greater number of species to which IR measurements can be applied. There are also significant advantages over alternative IR techniques, such as step-scan FT-IR, owing to the coherence and increased intensity and spectral resolution of the QCL source and in terms of cost. The instrument described in this work has potential applications in atmospheric chemistry, astrochemistry, combustion chemistry, and in the monitoring of trace species in industrial processes and medical diagnostics.
Abstract. The chemistry and reaction kinetics of reactive species dominate changes to the composition of complex chemical systems, including Earth’s atmosphere. Laboratory experiments to identify reactive species and their reaction products, and to monitor their reaction kinetics and product yields, are key to our understanding of complex systems. In this work we describe the development and characterisation of an experiment using laser flash photolysis coupled with time-resolved mid-infrared (mid-IR) quantum cascade laser (QCL) absorption spectroscopy, with initial results reported for measurements of the infrared spectrum, kinetics, and product yields for the reaction of the CH2OO Criegee intermediate with SO2. The instrument presented has high spectral (< 0.004 cm−1) and temporal (< 5 µs) resolution, and is able to monitor kinetics with a dynamic range to at least 20,000 s−1. Results obtained at 298 K and pressures between 20 and 100 Torr gave a rate coefficient for the reaction of CH2OO with SO2 of (3.83 ± 0.63) × 10−11 cm3 s−1, which compares well to the current IUPAC recommendation of × 10−11 cm3 s−1. A limit of detection of 4.0 × 10−5, in absorbance terms, can be achieved, which equates to a limit of detection of ~2 × 1011 cm−3 for CH2OO, monitored at 1285.7 cm−1, based on the detection pathlength of (218 ± 20) cm. Initial results, directly monitoring SO3 at 1388.7 cm−1, demonstrate that SO3 is the reaction product for CH2OO + SO2. The use of mid-IR QCL absorption spectroscopy offers significant advantages over alternative techniques commonly used to determine reaction kinetics, such as laser-induced fluorescence (LIF) or ultraviolet absorption spectroscopy owing to the greater number of species to which IR measurements can be applied. There are also significant advantages over alternative IR techniques, such as step-scan FT-IR, owing to the coherence and increased intensity and spectral resolution of the QCL source, and in terms of cost. The instrument described in this work has potential applications in atmospheric chemistry, astrochemistry, combustion chemistry, and in the monitoring of trace species in industrial processes and medical diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.