Limited non-invasive transhumeral prosthesis control exists due to the absence of signal sources on amputee residual muscles. This paper introduces a hybrid brain-machine interface (hBMI) that integrates surface electromyography (sEMG) and functional near-infrared spectroscopy (fNIRS) signals to overcome the limits of existing myoelectric upper-limb prosthesis. This hybridization aims to improve classification accuracy (CA) to escalate arm movements' control performance for individuals who have transhumeral amputation. To evaluate the effectiveness of this hBMI, fifteen healthy and three transhumeral amputee subjects for six arm motions were participating in the experiment. Myo armband was used to acquire sEMG signals corresponding to four arm motions: elbow extension, elbow flexion, wrist pronation, and wrist supination. Whereas fNIRS brain imaging modality was used to monitor cortical hemodynamics response from the prefrontal cortex region for two hand motions: hand open and hand close. The average accuracy of 94.6 % and 74% was achieved for elbow and wrist motions by sEMG for healthy and amputated subjects, respectively. Simultaneously, the fNIRS modality showed an average accuracy of 96.9% and 94.5% for hand motions of healthy and amputated subjects. This study demonstrates the feasibility of hybridizing sEMG and fNIRS signals to improve the CA for transhumeral amputees, improving the control performances of multifunctional upper-limb prostheses.INDEX TERMS Classification accuracy, fNIRS, hybrid brain-machine interface, sEMG, transhumeral prosthesis.
Two-wheeled mobile robots (TWMRs) have a capability of avoiding the tip-over problem on inclined terrain by adjusting the centre of mass position of the robot body. The effects of terrain inclination on the robot performance are studied to exploit this capability. Prior to the real-time implementation of position control, an estimation of the stability region of the TWMR is essential for safe operation. A numerical method to estimate the stability region is applied and the effects of inclined surfaces on the performance and stability region of the robot are investigated. The dynamics of a TWMR is modelled on a general uneven terrain and reduced for cases of inclined and horizontal flat terrain. A full state feedback (FSFB) controller is designed based on optimal gains with speed tracking on a horizontal flat terrain. The performance and stability regions are simulated for the robot on a horizontal flat and inclined terrain with the same controller. The results endorse a variation in equilibrium points and a reduction in stability region for robot motion on inclined terrain.
As non-renewable conventional fossil fuel sources are depleting day by day, researchers are continually finding new ways of producing and utilizing alternative, renewable, and reliable fuels. Due to conventional technologies, the environment has been degraded seriously, which profoundly impacts life on earth. To reduce the emissions caused by running the compression ignition engines, waste cooking oil (WCO) biodiesel is one of the best alternative fuels locally available in all parts of the world. Different study results are reviewed with a clear focus on combustion, performance, and emission characteristics, and the impact on engine durability. Moreover, the environmental and economic impacts are also reviewed in this study. When determining the combustion characteristics of WCO biodiesel, the cylinder peak pressure value increases and the heat release rate and ignition delay period decreases. In performance characteristics, brake-specific fuel consumption increases while brake-specific energy consumption, brake power, and torque decrease. WCO biodiesel cuts down the emissions value by 85% due to decreased hydrocarbon, SO2, CO, and smoke emissions in the exhaust that will effectively save the environment. However, CO2 and NOx generally increase when compared to diesel. The overall economic impact of production on the utilization of this resource is also elaborated. The results show that the use of WCO biodiesel is technically, economically, environmentally, and tribologically appropriate for any diesel engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.