Objective:In prior open-label studies, eteplirsen, a phosphorodiamidate morpholino oligomer, enabled dystrophin production in Duchenne muscular dystrophy (DMD) with genetic mutations amenable to skipping exon 51. The present study used a double-blind placebo-controlled protocol to test eteplirsen's ability to induce dystrophin production and improve distance walked on the 6-minute walk test (6MWT). Methods: DMD boys aged 7 to 13 years, with confirmed deletions correctable by skipping exon 51 and ability to walk 200 to 400 m on 6 MWT, were randomized to weekly intravenous infusions of 30 or 50 mg/kg/wk eteplirsen or placebo for 24 weeks (n 5 4/group). Placebo patients switched to 30 or 50 mg/kg eteplirsen (n 5 2/group) at week 25; treatment was open label thereafter. All patients had muscle biopsies at baseline and week 48. Efficacy included dystrophin-positive fibers and distance walked on the 6MWT. Results: At week 24, the 30 mg/kg eteplirsen patients were biopsied, and percentage of dystrophin-positive fibers was increased to 23% of normal; no increases were detected in placebo-treated patients (p 0.002). Even greater increases occurred at week 48 (52% and 43% in the 30 and 50 mg/kg cohorts, respectively), suggesting that dystrophin increases with longer treatment. Restoration of functional dystrophin was confirmed by detection of sarcoglycans and neuronal nitric oxide synthase at the sarcolemma. Ambulation-evaluable eteplirsen-treated patients experienced a 67.3 m benefit compared to placebo/delayed patients (p 0.001). Interpretation: Eteplirsen restored dystrophin in the 30 and 50 mg/kg/wk cohorts, and in subsequently treated, placebo-controlled subjects. Duration, more than dose, accounted for dystrophin production, also resulting in ambulation stability. No severe adverse events were encountered.
Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder associated with dystrophin deficiency that results in chronic inflammation and severe skeletal muscle degeneration. In DMD mouse models and patients, we find that IκB kinase/NF-κB (IKK/NF-κB) signaling is persistently elevated in immune cells and regenerative muscle fibers. Ablation of 1 allele of the p65 subunit of NF-κB was sufficient to improve pathology in mdx mice, a model of DMD. In addition, conditional deletion of IKKβ in mdx mice elucidated that NF-κB functions in activated macrophages to promote inflammation and muscle necrosis and in skeletal muscle fibers to limit regeneration through the inhibition of muscle progenitor cells. Furthermore, specific pharmacological inhibition of IKK resulted in improved pathology and muscle function in mdx mice. Collectively, these results underscore the critical role of NF-κB in the progression of muscular dystrophy and suggest the IKK/NF-κB signaling pathway as a potential therapeutic target for DMD.
Cachexia contributes to nearly a third of all cancer deaths, yet the mechanisms underlying skeletal muscle wasting in this syndrome remain poorly defined. We report that tumor-induced alterations in the muscular dystrophy-associated dystrophin glycoprotein complex (DGC) represent a key early event in cachexia. Muscles from tumor-bearing mice exhibited membrane abnormalities accompanied by reduced levels of dystrophin and increased glycosylation on DGC proteins. Wasting was accentuated in tumor mdx mice lacking a DGC but spared in dystrophin transgenic mice that blocked induction of muscle E3 ubiquitin ligases. Furthermore, DGC deregulation correlated positively with cachexia in patients with gastrointestinal cancers. Based on these results, we propose that, similar to muscular dystrophy, DGC dysfunction plays a critical role in cancer-induced wasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.