Herein, we report a convenient and facile methodology for the synthesis of new series of pyrazole and pyrimidine derivatives 2a–f and 3a–f under ultrasound irradiation. Pyrazole and pyrimidine derivatives have been synthesized in better yields and shorter reaction times compared with the conventional method. The chemical structures of all the synthesized compounds were elucidated by their IR, 1H NMR, 13C NMR, MS, and elemental analysis. Further, the target compounds were screened for their antimicrobial activity against four bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa) and two fungi (Candida albicans, Aspergillus niger). In particular, compounds 2a, 2d, 2e, 3a, 3e, and 3f exhibited potent antimicrobial activity.
In the development of novel antimicrobial agents, we synthesized novel 1,2,3‐triazole‐based pyrazole and pyrimidine derivatives 6(a–f) and 7(a–f) by ultrasound‐assisted method. The synthesized compounds were characterized by IR, 1H NMR, 13C NMR, MS, and elemental analysis. All compounds were assessed in vitro for their efficacy as antimicrobial agents against four bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa) and two fungi (Candida albicans and Aspergillus niger). In particular, compounds 6a, 6e, 7a, 7c, and 7e exhibited highly potent antimicrobial activity.
New tetrazole-based pyrazole and pyrimidine derivatives were synthesized by an ultrasound irradiation method. All compounds were characterized by infrared spectroscopy (IR), 1H nuclear magnetic resonance (NMR), 13C NMR, mass spectrometry (MS) and elemental analysis and assessed in vitro for their efficacy as antimicrobial agents against four bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa) and two fungi (Candida albicans, Aspergillus niger). Compounds 8a, 8e, 9a, 9b and 9e show potent activity against the tested strains compared to the reference drugs chloramphenicol and clotrimazole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.