Occupancy grid map is a map representation that shows the occupancy of spaces, whether there is any object in a particular area or it is a free space. This map representation is also commonly known as a grid map. However, the accuracy of the occupancy grid map is highly dependent on the accuracy of the sensors. In this paper, low cost and noisy sensors such as infrared sensors were used with the occupancy grid map algorithm integrated with a neural network. The neural network was used to interpret adjacent sensor measurements into cell’s occupancy value in the grid map. From the simulation experiments, it is observed that, that neural network-integrated algorithm has a better map estimate throughout robot’s navigation with mean of 28% more accurate compared to occupancy grid map algorithm without neural network. This finding is beneficial for implementation with simultaneous localization and mapping or commonly known as SLAM problem. This is because SLAM algorithm makes use of both estimations of environment’s map and robot’s state. Thus, a better map estimate throughout the robot’s journey can improve a robot’s state estimate as well.
This article proposes a framework for the depth map reconstruction using stereo images. Fundamentally, this map provides an important information which commonly used in essential applications such as autonomous vehicle navigation, drone’s navigation and 3D surface reconstruction. To develop an accurate depth map, the framework must be robust against the challenging regions of low texture, plain color and repetitive pattern on the input stereo image. The development of this map requires several stages which starts with matching cost calculation, cost aggregation, optimization and refinement stage. Hence, this work develops a framework with sum of absolute difference (SAD) and the combination of two edge preserving filters to increase the robustness against the challenging regions. The SAD convolves using block matching technique to increase the efficiency of matching process on the low texture and plain color regions. Moreover, two edge preserving filters will increase the accuracy on the repetitive pattern region. The results show that the proposed method is accurate and capable to work with the challenging regions. The results are provided by the Middlebury standard dataset. The framework is also efficiently and can be applied on the 3D surface reconstruction. Moreover, this work is greatly competitive with previously available methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.