The optimal electrolyte composition for electrolyte-plasma surface hardening of 40XH steel, which does not lead to the surface layer to erosion, oxidation and decarburization are determined in this work. It is shown that after electrolytic-plasma surface hardening a modified layer with a thickness of 1–1.2 mm is formed with high hardness and wear resistance which consisting of a hardened layer of fine-grained martensite, an intermediate layer of perlite and martensite.
This paper investigates how electrolytic plasma hardening (PEH) bears upon the changes in the phase structural and tribological properties of steel 0.34C-1Cr-1Ni-1Mo-Fe, which is widely used in manufacturing highly stressed gears. The samples of steel 0.34C-1Cr-1Ni-1Mo-Fe went through the PEH in an electrolyte containing an aqua solution of 20% calcined soda (Na2CO3) and 10% carbamide ((NH2)2CO). The initial steel 0.34C-1Cr-1Ni-1Mo-Fe is stated to have the following structural components: a lamellar pearlite with volume share of 35%, a ferrite-carbide mixture of ~45% and a fragmented ferrite of ~20%; after the PEH it contains lath-lamellar martensite, fine particles of cementite and M23C6 carbide. The durability of steel 0.34C-1Cr-1Ni-1Mo-Fe was found to rise by 3.4 times after the PEH and its microhardness increased in 2.6 times. The curve-tension of the crystal lattice was established to be like plastic (χ = χpl) and does not cause the formation of microcracks in the material.
The article presents the results of studying the process of electrolytic-plasma hardening of 0.34Cr-1Ni-Mo-Fe steel by surface hardening, as well as the results of the current-voltage characteristics of the cathodic electrolytic-plasma process depending on the composition of the electrolyte. Temperature-time and special modes of electrolytic-plasma hardening of steel 0.34Cr-1Ni-Mo-Fe were determined. The optimal composition of the electrolyte for electrolytic-plasma hardening has been determined, providing a relatively high heating rate and high hardness of the steel surface. It has been determined that after the electrolytic-plasma hardening, the microhardness of 34KhN1M steel increases 2.9 times due to the formation of fine martensite. In this case, the basis of the material does not change, it consists of a ferrite-pearlite structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.