BackgroundPeripheral neuropathy (PN) due to paclitaxel is a common dose-limiting toxicity with no effective prevention or treatment. We hypothesize that continuous-flow limb hypothermia can reduce paclitaxel-induced PN.Patients and methodsAn internally controlled pilot trial was conducted to investigate the neuroprotective effect of continuous-flow limb hypothermia in breast cancer patients receiving weekly paclitaxel. Patients underwent limb hypothermia of one limb for a duration of 3 h with every paclitaxel infusion, with the contralateral limb used as control. PN was primarily assessed using nerve conduction studies (NCSs) before the start of chemotherapy, and after 1, 3, and 6 months. Skin temperature and tolerability to hypothermia were monitored using validated scores.ResultsTwenty patients underwent a total of 218 cycles of continuous-flow limb hypothermia at a coolant temperature of 22°C. Continuous-flow limb hypothermia achieved mean skin temperature reduction of 1.5 ± 0.7°C and was well tolerated, with no premature termination of cooling due to intolerance. Grade 3 PN occurred in 2 patients (10%), grade 2 in 2 (10%), and grade 1 in 12 (60%). Significant correlation was observed between amount of skin cooling and motor nerve amplitude preservation at 6 months (p < 0.0005). Sensory velocity and amplitude in the cooled limbs were less preserved than in the control limbs, but the difference did not attain statistical significance. One patient with a history of diabetes mellitus had significant preservation of compound muscle action potential in the cooled limb on NCS analysis.ConclusionThis study suggests that continuous limb hypothermia accompanying paclitaxel infusion may reduce paclitaxel-induced PN and have therapeutic potential in select patients and warrants further investigation. The method is safe and well tolerated.
Purpose Severe peripheral neuropathy is a common dose-limiting toxicity of taxane chemotherapy, with no effective treatment. Frozen gloves have shown to reduce the severity of neuropathy in several studies but comes with the incidence of undesired side effects such as cold intolerance and frostbite in extreme cases. A device with thermoregulatory features which can safely deliver tolerable amounts of cooling while ensuring efficacy is required to overcome the deficiencies of frozen gloves. The role of continuous-flow cooling in prevention of neurotoxicity caused by paclitaxel has been previously described. This study hypothesized that cryocompression (addition of dynamic pressure to cooling) may allow for delivery of lower temperatures with similar tolerance and potentially improve efficacy. Method A proof-of-concept study was conducted in cancer patients receiving taxane chemotherapy. Each subject underwent four-limb cryocompression with each chemotherapy infusion (three hours) for a maximum of 12 cycles. Cryocompression was administered at 16°C and cyclic pressure (5-15 mmHg). Skin surface temperature and tolerance scores were recorded. Neuropathy was assessed using clinician-graded peripheral sensory neuropathy scores, total neuropathy score (TNS) and nerve conduction studies (NCS) conducted before (NCS pre), after completion (NCS post) and 3 months post-chemotherapy (NCS 3m). Results were retrospectively compared with patients who underwent paclitaxel chemotherapy along with continuous-flow cooling and controls with no hypothermia. Results In total, 13 patients underwent 142 cycles of cryocompression concomitant with chemotherapy. Limb hypothermia was well tolerated, and only 1 out of 13 patients required an intra-cycle temperature increase, with no early termination of cryocompression in any subject. Mean skin temperature reduction of 3.8 ± 1.7°C was achieved. Cryocompression demonstrated significantly greater skin temperature reductions compared to continuous-flow cooling and control (p < 0.0001). None of the patients experienced severe neuropathy (clinician-assessed neuropathy scores of grade 2 or higher). NCS analysis showed preservation of motor amplitudes at NCS 3m in subjects who underwent cryocompression, compared to the controls who showed Electronic supplementary material The online version of this article (
Pre-preparation of chemotherapy, together with effective phone triaging, is an effective way to reduce chemotherapy wait time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.