Genetic transformation of plant cells by Agrobacterium tumefaciens represents a unique case of trans-kingdom sex requiring the involvement of both bacterial virulence proteins and plant-encoded proteins. We have developed in planta and leaf-disk assays in Nicotiana benthamiana for identifying plant genes involved in Agrobacterium-mediated plant transformation using virus-induced gene silencing (VIGS) as a genomics tool. VIGS was used to validate the role of several genes that are either known or speculated to be involved in Agrobacterium-mediated plant transformation. We showed the involvement of a nodulin-like protein and an alpha-expansin protein (alpha-Exp) during Agrobacterium infection. Our data suggest that alpha-Exp is involved during early events of Agrobacterium-mediated transformation but not required for attaching A. tumefaciens. By employing the combination of the VIGS-mediated forward genetics approach and an in planta tumorigenesis assay, we identified 21 ACG (altered crown gall) genes that, when silenced, produced altered crown gall phenotypes upon infection with a tumorigenic strain of A. tumefaciens. One of the plant genes identified from the screening, Histone H3 (H3), was further characterized for its biological role in Agrobacterium-mediated plant transformation. We provide evidence for the role of H3 in transfer DNA integration. The data presented here suggest that the VIGS-based approach to identify and characterize plant genes involved in genetic transformation of plant cells by A. tumefaciens is simple, rapid, and robust and complements other currently used approaches.
Using a conditional life or death screen in yeast, we have isolated a tomato (Lycopersicon esculentum) gene encoding a phospholipid hydroperoxide glutathione peroxidase (LePHGPx). The protein displayed reduced glutathione-dependent phospholipid hydroperoxide peroxidase activity, but differs from counterpart mammalian enzymes that instead contain an active seleno-Cys. LePHGPx functioned as a cytoprotector in yeast (Saccharomyces cerevisiae), preventing Bax, hydrogen peroxide, and heat stress induced cell death, while also delaying yeast senescence. When tobacco (Nicotiana tabacum) leaves were exposed to lethal levels of salt and heat stress, features associated with mammalian apoptosis were observed. Importantly, transient expression of LePHGPx protected tobacco leaves from salt and heat stress and suppressed the apoptotic-like features. As has been reported, conditional expression of Bax was lethal in tobacco, resulting in tissue collapse and membrane permeability to Evans blue. When LePHGPx was coexpressed with Bax, little cell death and no vital staining were observed. Moreover, stable expression of LePHGPx in tobacco conferred protection against the fungal phytopathogen Botrytis cinerea. Taken together, our data indicated that LePHGPx can protect plant tissue from a variety of stresses. Moreover, functional screens in yeast are a viable tool for the identification of plant genes that regulate cell death.
Agroinoculation, first developed as a simple tool to study plant-virus interactions, is a popular method of choice for functional gene analysis of viral genomes. With the explosive growth of genomic information and the development of advanced vectors to dissect plant gene function, this reliable method of viral gene delivery in plants, has been recruited and morphed into a technique popularly known as agroinfiltration. This technique was developed to examine the effects of transient gene expression, with applications ranging from studies of plant-pathogen interactions, abiotic stresses, a variety of transient expression assays to study protein localization, and protein-protein interactions. We present a brief overview of literature which document both these applications, and then provide simple agroinoculation and agroinfiltration methods being used in our laboratory for functional gene analysis, as well as for fast-forward and reverse genetic screens using virus-induced gene silencing (VIGS).
SUMMARYNon-homologous end joining (NHEJ) is the major model proposed for Agrobacterium T-DNA integration into the plant genome. In animal cells, several proteins, including KU70, KU80, ARTEMIS, DNA-PKcs, DNA ligase IV (LIG4), Ataxia telangiectasia mutated (ATM), and ATM-and Rad3-related (ATR), play an important role in 'classical' (c)NHEJ. Other proteins, including histone H1 (HON1), XRCC1, and PARP1, participate in a 'backup' (b)NHEJ process. We examined transient and stable transformation frequencies of Arabidopsis thaliana roots mutant for numerous NHEJ and other related genes. Mutants of KU70, KU80, and the plant-specific DNA LIGASE VI (LIG6) showed increased stable transformation susceptibility. However, these mutants showed transient transformation susceptibility similar to that of wild-type plants, suggesting enhanced T-DNA integration in these mutants. These results were confirmed using a promoter-trap transformation vector that requires T-DNA integration into the plant genome to activate a promoterless gusA (uidA) gene, by virus-induced gene silencing (VIGS) of Nicotiana benthamiana NHEJ genes, and by biochemical assays for T-DNA integration. No alteration in transient or stable transformation frequencies was detected with atm, atr, lig4, xrcc1, or parp1 mutants. However, mutation of parp1 caused high levels of T-DNA integration and transgene methylation. A double mutant (ku80/parp1), knocking out components of both NHEJ pathways, did not show any decrease in stable transformation or T-DNA integration. Thus, T-DNA integration does not require known NHEJ proteins, suggesting an alternative route for integration.
Agrobacterium tumefaciens is a soilborne pathogen that causes crown gall disease in many dicotyledonous plants by transfer of a portion of its tumor-inducing plasmid (T-DNA) into the plant genome. Several plant factors that play a role in Agrobacterium attachment to plant cells and transport of T-DNA to the nucleus have been identified, but the T-DNA integration step during transformation is poorly understood and has been proposed to occur via nonhomologous end-joining (NHEJ)-mediated doublestrand DNA break (DSB) repair. Here, we report a negative role of X-RAY CROSS COMPLEMENTATION GROUP4 (XRCC4), one of the key proteins required for NHEJ, in Agrobacterium T-DNA integration. Downregulation of XRCC4 in Arabidopsis and Nicotiana benthamiana increased stable transformation due to increased T-DNA integration. Overexpression of XRCC4 in Arabidopsis decreased stable transformation due to decreased T-DNA integration. Interestingly, XRCC4 directly interacted with Agrobacterium protein VirE2 in a yeast two-hybrid system and in planta. VirE2-expressing Arabidopsis plants were more susceptible to the DNA damaging chemical bleomycin and showed increased stable transformation. We hypothesize that VirE2 titrates or excludes active XRCC4 protein available for DSB repair, thus delaying the closure of DSBs in the chromosome, providing greater opportunity for T-DNA to integrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.