Squares and circles are basic patterns for most mask designs of silicon microdevices. Evolution of etched Si crystallographic planes defined by square and circle patterns in the masking layer is presented and analyzed in this paper. The sides of square patterns in the masking layer are designed along predetermined <n10> crystallographic directions. Etching of a (100) silicon substrate is performed in 25 wt % tetramethylammonium hydroxide (TMAH) water solution at the temperature of 80 °C. Additionally, this paper presents three-dimensional (3D) simulations of the profile evolution during silicon etching of designed patterns based on the level-set method. We analyzed etching of designed patterns in the shape of square and circle islands. The crystallographic planes that appear during etching of 3D structures in the experiment and simulated etching profiles are determined. A good agreement between dominant crystallographic planes through experiments and simulations is obtained. The etch rates of dominant exposed crystallographic planes are also analytically calculated.
This paper presents etching of convex corners with sides along <n10> and <100> crystallographic directions in a 25 wt% tetramethylammonium hydroxide (TMAH) water solution at 80 °C. We analyzed parallelograms as the mask patterns for anisotropic wet etching of Si (100). The sides of the parallelograms were designed along <n10> and <100> crystallographic directions (1 < n < 8). The acute corners of islands in the masking layer formed by <n10> and <100> crystallographic directions were smaller than 45°. All the crystallographic planes that appeared during etching in the experiment were determined. We found that the obtained types of 3D silicon shape sustain when n > 2. The convex corners were not distorted during etching. Therefore, no convex corner compensation is necessary. We fabricated three matrices of parallelograms with sides along crystallographic directions <310> and <100> as examples for possible applications. Additionally, the etching of matrices was simulated by the level set method. We obtained a good agreement between experiments and simulations.
Maskless etching with convex corner compensation in the form of a ⟨1 0 0⟩ oriented beam is investigated using both experiments and simulations. The maskless convex corner compensation technique is defined as a combination of masked and maskless anisotropic etching of {1 0 0} silicon in 25 wt% TMAH water solution at a temperature of 80 °C. This technique enables fabrication of three-level micromachined silicon structures with compensated convex corners at the bottom of the etched structure. All crystallographic planes that appear during etching are determined and their etch rates are used to calculate the etch rate value in an arbitrary crystallographic direction necessary for simulation by an interpolation procedure. A 3D simulation of the profile evolution of the etched structure during masked and maskless etching of silicon based on the level set method is presented. All crystallographic planes of the etched silicon structures determined in the experiment are recognized in the corresponding simulated etching profiles obtained by the level set method.
A maskless convex corner compensation technique in a 25 wt% TMAH water solution at the temperature of 80 • C is presented and analyzed. The maskless convex corner compensation technique is defined as a combination of masked and maskless anisotropic etching with convex corner compensation in the form of a 1 0 0 oriented beam. This technique enables the fabrication of three-level micromachined silicon structures with compensated convex corner at the bottom of the etched structure. All the planes that appear during the etching of (1 0 0) silicon in the 25 wt% TMAH water solution at the temperature of 80 • C are determined. Analytical relations have been found to explain the etching of all exposed planes and to calculate their etch rates. Analytical relations are determined and empirically verified in order to obtain regular shapes of the three-level silicon mesa structures. A boss for a low-pressure piezoresistive sensor has been fabricated as an example of the maskless convex corner compensation technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.