Researchers proposed various visual based methods for estimating the fruit quantity and performing qualitative analysis, they used ariel and ground vehicles to capture the fruit images in orchards. Fruit yield estimation is a challenging task with environmental noise such as illumination changes, color variation, overlapped fruits, cluttered environment, and branches or leaves shading. In this paper, we proposed a learning free fast visual based method to correctly count the apple fruits tightly overlapped in a complex outdoor orchard environment. We first carefully build the color based HS model to perform the color based segmentation. This step extracts the apple fruits from the complex orchard background and produces the blobs representing apples along with the additional noisy regions. We used the fine tuned morphological operators to refine the blobs received from the previous step and remove the noisy regions followed by the Gaussian smoothing. Finally we treated the circular shaped blobs with Hough Transform algorithm to calculate the center coordinates of each apple edge and the method correctly locates the apples in the images. The results ensures the proposed algorithm successfully detects and count apple fruits in the images captured from apple orchard and outperforms the standard state of the art contoured based method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.