Internet of Things (IoT) has transcended from its application in traditional sensing networks such as wireless sensing and radio frequency identification to life-changing and critical applications. However, IoT networks are still vulnerable to threats, attacks, intrusions, and other malicious activities. Intrusion Detection Systems (IDS) that employ unsupervised learning techniques are used to secure sensitive data transmitted on IoT networks and preserve privacy. This paper proposes a hybrid model for intrusion detection that relies on a dimension reduction algorithm, an unsupervised learning algorithm, and a classifier. The proposed model employs Principal Component Analysis (PCA) to reduce the number of features in a dataset. The K-means algorithm generates clusters that serve as class labels for the Support Vector Machine (SVM) classifier. Experimental results using the NSL-KDD and the UNSW-NB15 datasets justify the effectiveness of our proposed model in detecting malicious activities in IoT networks. The proposed model, when trained, identifies benign and malicious behaviours using an unlabelled dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.