Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, the modulation of enzymes that control anabolic and catabolic pathways causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These increased levels are associated with proliferation, and recent studies emphasize the complex reciprocal interactions between oncogenic signalling and choline metabolism. Because choline-containing compounds are detected by non-invasive magnetic resonance spectroscopy (MRS), increased levels of these compounds provide a non-invasive biomarker of transformation, staging and response to therapy. Furthermore, enzymes of choline metabolism, such as choline kinase, present novel targets for image-guided cancer therapy.
Purpose Modern imaging technologies such as CT, PET, SPECT, and MRI employ contrast agents to visualize the tumor microenvironment, providing information on malignancy and response to treatment. Currently, all clinical imaging agents require chemical labeling, i.e. with iodine (CT), radioisotopes (PET/SPECT), or paramagnetic metals (MRI). The goal was to explore the possibility of using simple D-glucose as an infusable biodegradable MRI agent for cancer detection. Methods D-glucose signals were detected using chemical exchange saturation transfer (glucoCEST) MRI of its hydroxyl groups. Feasibility was established in phantoms as well as in vivo using two human breast cancer cell lines, MDA-MB-231 and MCF-7, implanted orthotopically in nude mice. PET and contrast-enhanced MRI were also acquired. Results Both tumor types exhibited significant glucoCEST signal enhancement during systemic sugar infusion (mild hyperglycemia), allowing their noninvasive visualization. GlucoCEST showed differences between types, while PET and CE-MRI did not. Data are discussed in terms of signal contributions from the increased vascular volume in tumors and especially from the acidic extracellular extravascular space (EES), where glucoCEST signal is expected to be enhanced due to a slow-down of hydroxyl proton exchange. Conclusions This observation opens up the possibility for using simple non-toxic sugars as contrast agents for cancer detection with MRI by employing hydroxyl protons as a natural label.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.