This paper presents the development of a novel polymorphing wing capable of Active Span morphing And Passive Pitching (ASAPP) for small UAVs. The span of an ASAPP wing can be actively extended by up to 25% to enhance aerodynamic efficiency, whilst its pitch near the wingtip can be passively adjusted to alleviate gust loads. To integrate these two morphing mechanisms into one single wing design, each side of the wing is split into two segments (e.g., inboard and outboard segments). The inboard segment is used for span extension whilst the outboard segment is used for passive pitch. The inboard segment consists of a main spar that can translate in the spanwise direction. Flexible skin is used to cover the inboard segment and maintain its aerodynamic shape. The skin transfers the aerodynamic loads to the main spar through a number of ribs that can slide on the main spar through linear plain bearings. A linear actuator located within the fuselage is used for span morphing. The inboard and outboard segments are connected by an overlapping spar surrounded by a torsional spring. The overlapping spar is located ahead of the aerodynamic center of the outboard segment to facilitate passive pitch. The aero-structural design, analysis, and sizing of the ASAPP wing are detailed here. The study shows that the ASAPP wing can be superior to the baseline wing (without morphing) in terms of aerodynamic efficiency, especially when the deformation of the flexible skin is minimal. Moreover, the passive pitching near the wingtip can reduce the root loads significantly, minimizing the weight penalty usually associated with morphing.
The objective of this study is to analyze the working potential of Environmental Non-Governmental Organizations (ENGOs) in Punjab, Pakistan. Semi-structured questionnaire was designed to fulfill the rationale of the study. The potential of working of ENGO is based on the various factors such as financial support, acceptability by the local community, qualification of the staff and social threats while working. Descriptive analysis and Pearson Chi-Square were applied on the collected data to find out the percentage and association. The results showed that operative structure of 65.4% of the ENGOs is volunteer based. Only 42.3% of ENGOs are working on the environmental issues while, others have mixed working scope and vision. There is a lack of auditing system to check the efficient utilization of the resources. A mechanism of self-reporting has been developed by the ENGOs to report to their donors. There is a strong relationship between the number of the staff, age and the strength of the ENGO. It was also found that ENGOs working in Punjab, Pakistan are not being effected by the political parties and having minor social threats. The analysis also showed that the working ENGOs lack the funding which immobilizes them to work efficiently. Many ENGOs have stopped working but their names are still present in the list of the registered ENGOs. There is vital need to update list of ENGOs by concerned departments and to properly mechanize the system of monitoring and auditing.
This paper presents an aeroelastic analysis of a polymorphing wing capable of active span extension and passive pitch variation. The wing is split into two segments: an inboard segment responsible for span extension/retraction and an outboard segment capable of pitch variation. The two segments are connected through an overlapping spar and a torsional spring. A finite element aeroelastic model is developed where the wing structure is discretized into Euler–Bernoulli beam elements and the aerodynamic loads are calculated using Theodorsen’s unsteady model. A comprehensive parametric analysis is carried out with and without span extension to analyze the effect of varying critical design parameters, such as elastic axis position of outboard section and torsional spring rigidity, and conditions for aeroelastic phenomena of flutter and divergence are studied. A gust load analysis is carried out to quantify the capability of the outboard wing passive twist mechanism to alleviate loads. Finally, a nonlinear analysis is carried out by replacing the linear torsional spring with a nonlinear cubic spring to study the effects of cubic hardening and softening on the aeroelasticity of the polymorphing wing.
This paper studies the effect of morphing rate on the aeroelasticity of a polymorphing wing capable of active span extension and passive twist/pitch. A variable domain size finite element model is developed to capture the dynamic effects due to the presence of a variable span in the Euler–Bernoulli beam model, which introduces a structural damping term in the equations of motion. The effect of various morphing rates on the aeroelastic boundaries of the system, namely, flutter velocity and flutter frequency, is examined for a beam undergoing span extension and retraction, from baseline span to 25% span extension and vice versa, respectively. Three points of interest are analyzed: at the start of the span morphing, at the mid-point of morphing, and just before the morphing process ends. The parametric analysis is carried out to determine the effect of varying critical parameters, such as the elastic axis location of the outboard wing section and adjoining spring torsional rigidity on the aeroelastic boundaries of the polymorphing wing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.