Abstract-In this article, we propose a survey of the Simultaneous Localization And Mapping field when considering the recent evolution of autonomous driving. The growing interest regarding self-driving cars has given new directions to localization and mapping techniques. In this survey, we give an overview of the different branches of SLAM before going into the details of specific trends that are of interest when considered with autonomous applications in mind. We first present the limits of classical approaches for autonomous driving and discuss the criteria that are essential for this kind of application. We then review the methods where the identified challenges are tackled. We mostly focus on approaches building and reusing long-term maps in various conditions (weather, season, etc.). We also go through the emerging domain of multi-vehicle SLAM and its link with self-driving cars. We survey the different paradigms of that field (centralized and distributed) and the existing solutions. Finally, we conclude by giving an overview of the various largescale experiments that have been carried out until now and discuss the remaining challenges and future orientations.
From the early beginning, the Simultaneous Localization And Mapping (SLAM) problem has been approached using a probabilistic background. A new solution based on the Transferable Belief Model (TBM) framework is proposed in this article. It appears that this representation of knowledge affords numerous advantages over the classic probabilistic ones and leads to particularly good performances (an average of 3.2% translation drift and 0.0040deg/m rotation drift), especially when it comes to crowded environment. By introducing the basic concepts of a Credibilist SLAM, this article aims at proving that the use of this new theoretical context opens a lot of perspectives for the SLAM community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.