Video compression is the process of reducing the amount of data required to represent digital video while preserving an acceptable video quality. Recent studies on video compression have focused on multimedia transmission, videophones, teleconferencing, high definition television, CD-ROM storage, etc. The idea of compression techniques is to remove the redundant information that exists in the video sequences. Motion compensation predictive coding is the main coding tool for removing temporal redundancy of video sequences and it typically accounts for 50-80% of video encoding complexity. This technique has been adopted by all of the existing
i
ACKNOWLEDGMENTSMy thanks go firstly, as it should always be, to Allah who gave me the energy, health, and courage to spend a lot of determination and time until I completed this work.My most sincere gratitude and appreciation to my supervisor Dr Abir Hussain for all her patience, valuable advice, discussions, convincing arguments and more during the life of this thesis, I wish her all the best for the future. I also owe a great debt to Dr. Dhiya Al-Jumeily for his support, advice and encouragement from the beginning until now and I would like to thank him for his constructive comments on my thesis. Motion compensated predictive coding is the main coding tool for removing temporal redundancy of video sequences and it typically accounts for 50-80% of the video encoding complexity. This technique has been adopted by all of the existing international video coding standards. It assumes that the current frame can be locally modelled as a translation of the reference frames. The practical and widely method used to carry out motion compensated prediction is block matching algorithm. In this method, video frames are divided into a set of non-overlapped macroblocks; each target macroblock of the current frame is compared with the search area in the reference frame in order to find the best matching macroblock. This will carry out displacement vectors that stipulate the movement of the macroblocks from one location to another in the reference frame. Checking all these locations is called full Search, which provides the best result. However, this algorithm suffers from long computational time, which necessitates improvement. Several methods of Fast Block Matching algorithm were developed to reduce the computation complexity.This thesis focuses on two classifications: the first is called the lossless block matching algorithm process, in which the computational time required to determine the matching macroblock of the full search is decreased while the resolution of the predicted frames is the same as for the full search. The second is called the lossy block matching algorithm process, which reduces the computational complexity effectively but the search result's quality is not the same as for the full search.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.