Modeling and analyses of complex systems using network theory have been an object of study for a long time. They have caught attention in many disciplines such as sociology, epidemiology, ecology, psychology, biology, biomedicine, and other fields. Network theory is especially an efficient tool to model biological networks such as gene co-expression networks, protein-protein interaction networks, or pathways. Considering the enhanced resolutions of complex real-world systems, the interest has been directed to multilayered networks. However, despite this surge of recent attention, the use of the multilayer framework in the biological field is still in its youth. In this paper, we review the different aspects and terminologies of multilayered networks. We also briefly discuss the variant applications of the multilayer framework, and finally, we give an overview of various existing applications of the multilayer model in network biology.
The modelling of complex biological networks such as pathways has been a necessity for scientists over the last decades. The study of these networks also imposes a need to investigate different aspects of nodes or edges within the networks, or other biomedical knowledge related to it. Our aim is to provide a generic modelling framework to integrate multiple pathway types and further knowledge sources influencing these networks. This framework is defined by a multi-layered model allowing automatic network transformations and documentation. By providing a tool that generates this model, we aim to facilitate the data integration, boost the reproducibility and increase the interoperability between different sources and databases in the field of pathways. We present mully R package that allows the user to create, modify and visualize graphs with multi-layers. The package is implemented with features to specifically handle multilayered graphs.
This work opens a new path to fight parasites by targeting host molecular functions by repurposing available and approved drugs. We created a novel approach to identify key proteins involved in any biological process by combining gene regulatory networks and expression profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.