Background Fusarium crown rot is one of the major diseases that cause significant yield losses of wheat, and Trichoderma strains were known as an effective biocontrol agent. Main body The aim of this study was to evaluate the potential of coating durum wheat seeds of the cultivar “Karim” with 3 different Tunisian strains of Trichoderma sp. (S.INAT, SIO1, SIO2) and the Trichoderma-based commercial product Trianum-T22 on seed germination, seedling growth, and plant defense response against the pathogen Fusarium culmorum. The strains were identified using molecular tools based on sequencing ITS region of ribosomal DNA. The results confirmed at 99% of homology that the strains were T. harzianum. Under controlled conditions, the coating seeds were released with 400 μl of spore suspension at 107 spores/ml. The seed coating with Trianum-P, and S.INAT showed the highest seed germination rates ranging from 85 to 90% while S.IO1 and S.IO2 presented the lowest germination rates with 66 and 68%, respectively. At 20 days post-infection (dpi) with F. culmorum, the treated plants with S.INAT and Trianum-T22 reduced the disease incidence by 53.59 and 51.79%, respectively than the control. Besides, S.INAT induced two-folds the phenolic compounds level compared to infected control. Further, the peroxidase activity was enhanced by 50% in average since 10 dpi in plants treated with S.INAT and SIO2 than the control. Conclusion The results suggest that seed coating with T. harzianum S.INAT was a promising tool for crop production and protection under field conditions due to both direct antagonist activity and the indirect growth promotion. This strain seems to induce the systemic resistance of plants against foot crown rot disease.
Septoria leaf blotch (SLB) is considered one of the most devastating diseases affecting global wheat production. Biostimulant application is among the modern approaches in plant protection to overcome the impact of SLB’s fungicide resistance. In this manner, the effect of coating seeds with thyme essential oil or Paraburkholderia phytofirmansPsJN strain on SLB severity and yield components (spikes/m2, straw yield (SY), grain yield (GY) and thousand kernel weight (TKW)) were assessed under field conditions for 3 years. The effect on physiological traits and nitrogen and carbon isotope composition (δ15Ngrain, δ13Cgrain) and nitrogen and carbon content (Ngrain, Cgrain) of grains was assessed in one year of study. The increasing SLB severity decreased all yield components, increased δ15Ngrain and Cgrain content and slightly decreased δ13Cgrain as the resulting effect of Z.tritici inducing stomatal opening and leaf necrosis. Across the years, both treatments alleviated the SLB adverse impact by reducing SLB severity, increasing spikes/m2, SY, GY and TKW. Both treatments ameliorated grain quality by increasing Cgrain content and decreasing δ13Cgrain and δ15Ngrain. The difference between the performance of thyme oil or PsJN strain in terms of intensity and stability is discussed and considered to be linked to the different triggered systemic resistance and the associated amount of costs deriving from resource allocation towards defense processes.
Coating seeds with bio-control agents is a potentially effective approach to reduce the usage of pesticides and fertilizers applied and protect the natural environment. This study evaluated the effect of seed coating with Meyerozyma guilliermondii, strain INAT (MT731365), on seed germination, plant growth and photosynthesis, and plant resistance against Fusarium culmorum, in durum wheat under controlled conditions. Compared to control plants, seed coating with M. guilliermondii promoted the wheat growth (shoot and roots length and biomass), and photosynthesis and transpiration traits (chlorophyll, ɸPSII, rates of photosynthesis and transpiration, etc.) together with higher nitrogen balance index (NBI) and lower flavonols and anthocyanins. At 21 days post infection with Fusarium, M. guilliermondii was found to reduce the disease incidence and the severity, with reduction rates reaching up to 31.2% and 30.4%, respectively, as well as to alleviate the disease damaging impact on photosynthesis and plant growth. This was associated with lower ABA, flavonols and anthocyanins, compared to infected control. A pivotal function of M. guilliermondii as an antagonist of F. culmorum and a growth promoter is discussed.
Local genetic resources could constitute a promising solution to overcome drought stress. Thus, eight (8) durum wheat landraces and one improved variety were assessed for drought tolerance in pots under controlled conditions. Three water treatments were tested: control (100% of the field capacity (FC)), medium (50% FC), and severe (25% FC) stress. The assessment was carried out at the seedling stage to mimic stress during crop set-up. Results showed that increased water stress led to a decrease in biomass and morpho-physiological parameters and an increase in antioxidant enzyme activities. Severe water stress decreased the chlorophyll fluorescence parameters, relative water content, and water potential of the investigated genotypes by 56.45%, 20.58%, 50.18%, and 139.4%, respectively. Besides, the phenolic compounds content increased by 169.2% compared to the control. Catalase (CAT) and Guaiacol Peroxidase (GPX) activities increased at 17 days after treatment for most genotypes except Karim and Hmira. A principal component analysis showed that the most contributed drought tolerance traits were Chlorophyll fluorescence parameters, relative water content, and electrolyte conductivity. UPGMA clustering showed that the landraces Aouija, Biskri, and Hedhba exhibited a higher adaptive response to drought stress treatments indicating that water stress-adaptive traits are included in Tunisian landraces germplasm.
Durum wheat production is seriously threatened by Fusarium head blight (FHB) attacks in Tunisia, and the seed coating by bio-agents is a great alternative for chemical disease control. This study focuses on evaluating, under field conditions, the effect of seed coating with Trichoderma harzianum, Meyerozyma guilliermondii and their combination on (i) FHB severity, durum wheat grain yield and TKW in three crop seasons, and (ii) on physiological parameters and the carbon and nitrogen content and isotope composition in leaves and grains of durum wheat. The results indicated that the treatments were effective in reducing FHB severity by 30 to 70% and increasing grain yield with an increased rate ranging from 25 to 68%, compared to the inoculated control. The impact of treatments on grain yield improvement was associated with higher NDVI and chlorophyll content and lower canopy temperature. Furthermore, the treatments mitigated the FHB adverse effects on N and C metabolism by resulting in a higher δ13Cgrain (13C/12Cgrain) and δ15Ngrain (15N/14Ngrain). Overall, the combination outperformed the other seed treatments by producing the highest grain yield and TKW. The high potency of seed coating with the combination suggests that the two microorganisms have synergetic or complementary impacts on wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.