The feasibility of bispectral imaging photoplethysmography (iPPG) system for clinical assessment of cutaneous microcirculation at two different depths is proposed. The iPPG system has been developed and evaluated for in vivo conditions during various tests: (1) topical application of vasodilatory liniment on the skin, (2) skin local heating, (3) arterial occlusion, and (4) regional anesthesia. The device has been validated by the measurements of a laser Doppler imager (LDI) as a reference. The hardware comprises four bispectral light sources (530 and 810 nm) for uniform illumination of skin, video camera, and the control unit for triggering of the system. The PPG signals were calculated and the changes of perfusion index (PI) were obtained during the tests. The results showed convincing correlations for PI obtained by iPPG530 nm and LDI at (1) topical liniment (r = 0.98) and (2) heating (r = 0.98) tests. The topical liniment and local heating tests revealed good selectivity of the system for superficial microcirculation monitoring. It is confirmed that the iPPG system could be used for assessment of cutaneous perfusion at two different depths, morphologically and functionally different vascular networks, and thus utilized in clinics as a cost-effective alternative to the LDI.
Currently, photoplethysmography (PPG) is a frequently studied optical blood pulsation detection technique among biophotonic and biomedical researchers due to the fact that it shows high potential for estimating the arterial stiffness (AS). The extraction of diagnostically useful information requires standardized measurement procedure with good repeatability. However, the effects of a crucially important factor-the optimal contact pressure (CP) of the probe-are often ignored. Also, CP values are not reported to evaluate those effects. It is hypothesized that AS estimated from PPG pulse wave 2nd derivative parameter b/a is strongly inconsistent when recorded at nonoptimal probe CP. Our pilot study confirmed this during in vivo PPG recordings from conduit artery sites on five healthy subjects at variable probe CP (0 to 15 kPa) by using 880 nm reflectance type sensor, force transducer, and PPG alternating current (AC) signal pulse area derived optimal CP criterion. The b/a values, calculated from PPG with variable CP, showed variation >300 percent. In contrast, at the optimal CP, the b/a showed high repeatability (coefficient of variability <5 percent). The effect has been explained with exponential pulse pressure-volume relationship model which indicates the optimal CP range.
The present study introduces a recently developed compact hybrid device for real-time monitoring of skin oxygen saturation and temperature distribution. The prototype involves a snapshot hyperspectral camera, multi-wavelength illuminator, thermal camera, and built-in computer with custom-developed software. To validate this device in-vivo we performed upper arm vascular occlusion on eight healthy volunteers. Palm skin oxygen saturation maps were analyzed in real-time using k-means segmentation algorithm and two-layer optical diffuse model. The prototype system demonstrated a satisfying performance of skin hyperspectral measurements in the spectral range of 507–625 nm. The results confirmed the reliability of the proposed system for in-vivo assessment of skin hemoglobin saturation with oxygen and microcirculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.