Oestrogens are involved in the growth, development and homeostasis of a number of tissues. The physiological effects of these steroids are mediated by a ligand-inducible nuclear transcription factor, the oestrogen receptor (ER). Hormone binding to the ligand-binding domain (LBD) of the ER initiates a series of molecular events culminating in the activation or repression of target genes. Transcriptional regulation arises from the direct interaction of the ER with components of the cellular transcription machinery. Here we report the crystal structures of the LBD of ER in complex with the endogenous oestrogen, 17beta-oestradiol, and the selective antagonist raloxifene, at resolutions of 3.1 and 2.6 A, respectively. The structures provide a molecular basis for the distinctive pharmacophore of the ER and its catholic binding properties. Agonist and antagonist bind at the same site within the core of the LBD but demonstrate different binding modes. In addition, each class of ligand induces a distinct conformation in the transactivation domain of the LBD, providing structural evidence of the mechanism of antagonism.
Argonaute (Ago) proteins constitute a key component of the RNA-induced silencing complex (RISC). We report the crystal structure of Aquifex aeolicus Ago (Aa-Ago) together with binding and cleavage studies, which establish this eubacterial Ago as a bona fide guide DNA strand-mediated site-specific RNA endonuclease. We have generated a stereochemically robust model of the complex, where the guide DNA-mRNA duplex is positioned within a basic channel spanning the bilobal interface, such that the 5' phosphate of the guide strand can be anchored in a basic pocket, and the mRNA can be positioned for site-specific cleavage by RNase H-type divalent cation-coordinated catalytic Asp residues of the PIWI domain. Domain swap experiments involving chimeras of human Ago (hAgo1) and cleavage-competent hAgo2 reinforce the role of the PIWI domain in "slicer" activity. We propose a four-step Ago-mediated catalytic cleavage cycle model, which provides distinct perspectives into the mechanism of guide strand-mediated mRNA cleavage within the RISC.
Chitin, the second most abundant polysaccharide on earth, is degraded by chitinases and chitobiases. The structure of Serratia marcescens chitobiase has been refined at 1.9 A resolution. The mature protein is folded into four domains and its active site is situated at the C-terminal end of the central (beta alpha)8-barrel. Based on the structure of the complex with the substrate disaccharide chitobiose, we propose an acid-base reaction mechanism, in which only one protein carboxylate acts as catalytic acid, while the nucleophile is the polar acetamido group of the sugar in a substrate-assisted reaction. The structural data lead to the hypothesis that the reaction proceeds with retention of anomeric configuration. The structure allows us to model the catalytic domain of the homologous hexosaminidases to give a structural rationale to pathogenic mutations that underlie Tay-Sachs and Sandhoff disease.
The reaction mechanism seems to be similar to that of lysozyme and most other glycosylhydrolases, i.e. general acid-base catalysis. The role of the amino-terminal domain could not be identified, but it has similarities to the fibronectin III domain. This domain may possibly facilitate the interaction of chitinase A with chitin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.