This is a survey paper concerning stability results for the linear functional equation in single variable. We discuss issues that have not been considered or have been treated only briefly in other surveys concerning stability of the equation. In this way, we complement those surveys.
We are interested in the first prolongational limit set of the boundary of parallelizable regions of a given flow of the plane which has no fixed points. We prove that for every point from the boundary of a maximal parallelizable region, there exists exactly one orbit contained in this region which is a subset of the first prolongational limit set of the point. Using these uniquely determined orbits, we study the structure of maximal parallelizable regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.