This paper describes an architecture and analyzes the performance of dynamic provisioning of lightpaths in an optical network. In dynamic provisioning, a lightpath is set up in real-time without rearranging the working and protection routes of existing lightpaths, and without the knowledge of future lightpath provisioning events. This paper develops a general model of the physical topology of the optical network, and outlines routing approaches for dynamic provisioning of lightpaths. It analyzes via simulations the performance of dynamically provisioned unprotected, 1 + 1 protected and mesh-restored lightpaths. The analysis of the efficiency of network utilization of dynamic provisioning focuses on the spare capacity needed for protection, and in particular focuses on the impact of sharing of wavelength channels for mesh-restored lightpaths. The main conclusion from the performance studies is that significant capacity gains are achieved with sharing of wavelength-channels for mesh-restored lightpaths with dynamic provisioning even for sparse topologies, and even at moderate loads.
In this paper, we present a novel optimization algorithm for assigning weapons to targets based on desired kill probabilities. For the given weapons, targets, and desired kill probabilities, our optimization algorithm assigns weapons to targets that satisfy the desired kill probabilities and minimize the overkill. The minimization of overkill assures that any proper subset of the weapons assigned to a target results in a kill probability that is less than the desired kill probability on such a target. Computational results for up to 120 weapons and 120 targets indicate that the performance of this algorithm yields an average improvement in quality of solutions of 26.8% over the greedy algorithms, whereas execution times remained on the order of milliseconds.
a b s t r a c tIn the modern battlefields smart weapons inherently rely on the sensors. The benefit of assigning a given weapon to a target often depends on the pre-assigned sensor. In this paper we present an efficient algorithm to optimally assign sensors and weapons to targets. This algorithm is derived from the well-known auction algorithm, and it is named as Swt-opt. We prove that Swt-opt converges to an optimal solution.Published by Elsevier Ltd
a b s t r a c tWe show that for positive integers n, m with n(n−1)/2 ≥ m ≥ n−1, the graph L n,m having n vertices and m edges that consists of an (n−k)-clique and k−1 vertices of degree 1 has the fewest spanning trees among all connected graphs on n vertices and m edges. This proves Boesch's conjecture [F.T. Boesch, A. Satyanarayana, C.L. Suffel, Least reliable networks and reliability domination, IEEE Trans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.