Occupational lead (Pb) and cadmium (Cd) exposure occurs during processing and casting of nonferrous metals such as zinc. In contrast to Pb and Cd, Ca is essential for living organisms due to its important role in a multitude of functions, from cell signaling to bone growth. Pb and Cd exposure affects calcium metabolism in various ways. The aim of this study was to investigate the blood levels of Pb, Cd, and Ca and the levels of selected oxidative stress biomarkers in workers exposed to Pb and Cd. Population groups included 264 male employees in a lead-zinc smelter. The study population was divided into two subgroups based on the median of Ca serum level (2.42 mmol/l): the low-Ca-level group (L-Ca group) and the high-Ca-level group (H-Ca group). Ca level was significantly higher in the H-Ca group than in the L-Ca group due to the study design (by 26%). The level of zinc protoporphyrin (ZPP) was significantly higher in the L-Ca group than in the H-Ca group by 13%, while the blood lead levels (PbB) were similar in the examined groups. The level of cadmium (CdB) was significantly higher in the L-Ca group than in the H-Ca group by 33%. From oxidative stress markers in serum, only the levels of malondialdehyde (MDA) and ceruloplasmin (CER) were significantly higher in the L-Ca group than in the H-Ca group, by 12% and 4%, respectively. The correlation analysis showed negative correlations between Ca level and the levels of PbB, ZPP, CdB, and MDA. The presented results indicate that Ca level modulates the serum concentration of Cd and has an impact on Pb-induced impairment of heme synthesis. The higher Ca levels may lead to a decrease in the concentration of lipid peroxidation products. Moreover, serum calcium level seems to be able to modify the level of acute-phase proteins. Obtained results suggest that higher Ca level may be useful in reducing Cd level in occupationally exposed workers.
To investigate whether α-tocopherol supplementation in workers exposed to lead would reduce the oxidative stress intensity and decrease homocysteine level, the examined population was randomly divided into two groups. Workers in the first group (n = 49, reference group) were not administered any drugs. Workers in the second group (n = 34) were administered orally α-tocopherol, 200 mg per day for 12 weeks. The level of α-tocopherol significantly increased compared to the baseline and the reference group. The level of thiol groups significantly increased compared to the reference group. However, the levels of malondialdehyde and homocysteine did not significantly change. Animal studies suggest the ability of α-tocopherol administration to reverse adverse health effects of lead exposure, such as oxidative stress; however, the results of this study on humans do not confirm these protective effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.