This study investigates the potential of unmanned aerial vehicles (UAVs) to measure and monitor structural properties of forests. Two remote sensing techniques, airborne laser scanning (ALS) and structure from motion (SfM) were tested to capture three-dimensional structural information from a small multi-rotor UAV platform. A case study is presented through the analysis of data collected from a 30ˆ50 m plot in a dry sclerophyll eucalypt forest with a spatially varying canopy cover. The study provides an insight into the capabilities of both technologies for assessing absolute terrain height, the horizontal and vertical distribution of forest canopy elements, and information related to individual trees. Results indicate that both techniques are capable of providing information that can be used to describe the terrain surface and canopy properties in areas of relatively low canopy closure. However, the SfM photogrammetric technique underperformed ALS in capturing the terrain surface under increasingly denser canopy cover, resulting in point density of less than 1 ground point per m 2 and mean difference from ALS terrain surface of 0.12 m. This shortcoming caused errors that were propagated into the estimation of canopy properties, including the individual tree height (root mean square error of 0.92 m for ALS and 1.30 m for SfM). Differences were also seen in the estimates of canopy cover derived from the SfM (50%) and ALS (63%) pointclouds. Although ALS is capable of providing more accurate estimates of the vertical structure of forests across the larger range of canopy densities found in this study, SfM was still found to be an adequate low-cost alternative for surveying of forest stands.
Plant trait data have been used in various studies related to ecosystem functioning, community ecology, and assessment of ecosystem services. Evidences are that plant scientists agree on a set of key plant traits, which are relatively easy to measure and have a stable and strong predictive response to ecosystem functions. However, the field measurements of plant trait data are still limited to small area, to a certain moment in time and to certain number of species only. Therefore, remote sensing (RS) offers potential to complement or even replace field measurements of some plant traits. It offers instantaneous spatially contiguous information, covers larger areas and in case of satellite observations profits from their revisit capacity. In this review, we first introduce RS concepts of light-vegetation interactions, RS instruments for vegetation studies, RS methods, and scaling between field and RS observations. Further we discuss in detail current achievements and challenges of optical RS for mapping of key plant traits. We concentrate our discussion on three categorical plant traits (plant growth and life forms, flammability properties and photosynthetic pathways and activity) and on five continuous plant traits (plant height, leaf phenology, leaf mass per area, nitrogen and phosphorous concentration or content). We review existing literature to determine the retrieval accuracy of the continuous plant traits. The relative estimation error using RS ranged between 10% and 45% of measured mean value, i.e. around 10% for plant height of tall canopies, 20% for plant height of short canopies, 15% for plant nitrogen, 25% for plant phosphorus content/concentration, and 45% for leaf mass per area estimates.The potential of RS to map plant traits is particularly high when traits are related to leaf biochemistry, photosynthetic processes and canopy structure. There are also other plant traits, i.e. leaf chlorophyll content, water content and leaf area index, which can be retrieved from optical RS well and can be of importance for plant scientists.We underline the need that future assessments of ecosystem functioning using RS should require comprehensive and integrated measurements of various plant traits together with leaf and canopy spectral properties. By doing so, the interplay between plant structural, physiological, biochemical, phenological and spectral properties can be better understood. Disciplines Medicine and Health Sciences | Social and Behavioral Sciences Publication DetailsHomolova, L., Malenovsky, Z., Clevers, J. G. P. W., Garcia-Santos, G. & Schaepman, M. E. (2013 ecology, and assessment of ecosystem services. Evidences are that plant scientists agree on a 22 set of key plant traits, which are relatively easy to measure and have a stable and strong 23 predictive response to ecosystem functions. However, the field measurements of plant trait 24 data are still limited to small area, to a certain moment in time and to certain number of 25 species only. Therefore, remote sensing (RS) offers potential...
Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF -especially from space -is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in tandem with state-of-the-art algorithms to distinguish the emission from reflected and/or scattered ambient light. Because the red to far-red SIF emission is detectable non-invasively, it may be sampled repeatedly to acquire spatio-temporally explicit information about photosynthetic light responses and steady-state behaviour in vegetation.Progress in this field is accelerating with innovative sensor developments, retrieval methods, and modelling advances. This review distills the historical and current developments spanning the last several decades. It highlights SIF heritage and complementarity within the broader field of fluorescence science, the maturation of physiological and radiative transfer modelling, SIF signal retrieval strategies, techniques for field and airborne sensing, advances in satellite-based systems, and applications of these capabilities in evaluation of photosynthesis and stress effects. Progress, challenges, and future directions are considered for this unique avenue of remote sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.