The aim of multimodal optimisation is to find significant optima of a multimodal objective function including its global optimum. Many real-world applications are multimodal optimisation problems requiring multiple optimal solutions. The Bees Algorithm is a global optimisation procedure inspired by the foraging behaviour of honeybees. In this paper, several procedures are introduced to enhance the algorithm’s capability to find multiple optima in multimodal optimisation problems. In the proposed Bees Algorithm for multimodal optimisation, dynamic colony size is permitted to automatically adapt the search effort to different objective functions. A local search approach called balanced search technique is also proposed to speed up the algorithm. In addition, two procedures of radius estimation and optima elitism are added, to respectively enhance the Bees Algorithm’s ability to locate unevenly distributed optima, and eliminate insignificant local optima. The performance of the modified Bees Algorithm is evaluated on well-known benchmark problems, and the results are compared with those obtained by several other state-of-the-art algorithms. The results indicate that the proposed algorithm inherits excellent properties from the standard Bees Algorithm, obtaining notable efficiency for solving multimodal optimisation problems due to the introduced modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.