I. Introduction 4253 II. C−H‚‚‚π Improper, Blue-Shifting H-Bond 4256 1. Benzene‚‚‚Carbon−Hydrogen-Donor Complexes 4256 2. Fluorobenzene‚‚‚HCX 3 (X ) F, Cl) Complexes 4257 III. C−H‚‚‚O Improper, Blue-Shifting H-Bond 4258 IV. C−H‚‚‚F Improper, Blue-Shifting H-Bond 4260 V. C−H‚‚‚X -(X ) Halogen) Improper, Blue-Shifting H-Bond 4260 VI. Nature of H-Bonding and Improper, Blue-Shifting H-Bonding 4261 1. Role of Dispersion Energy 4261 2. "Atoms in Molecules" (AIM) Topological Analysis 4261 3. NBO Analysis of the Electronic Structure 4262 4. Analysis of Molecular Orbitals 4263 VII. Conclusion 4263 VIII. Acknowledgments 4263 IX. References 4264
In the infrared spectra of solutions in liquid argon of dimethyl ether ((CH(3))(2)O) and fluoroform (HCF(3)), bands due to a 1:1 complex between these monomers have been observed. The C-H stretch of the HCF(3) moiety in the complex appears 17.7 cm(-1) above that in the monomer, and its intensity decreases by a factor of 11(2). These characteristics situate the interaction between the monomers in the realm of improper, blue-shifting hydrogen bonding. The complexation shifts the C-F stretches downward by some 9 cm(-1), while the C-H stretches in (CH(3))(2)O are shifted upward by 9-15 cm(-1), and the C-O stretches are shifted downward by 5 cm(-1). These shifts are in very good agreement with those calculated by means of correlated ab initio methods, and this validates a two-step mechanism for improper, blue-shifting hydrogen bonding. In the first step, the electron density is transferred from the oxygen lone electron pairs of the proton acceptor ((CH(3))(2)O) to fluorine lone electron pairs of the proton donor (CHF(3)) which yields elongation of all CF bonds. Elongation of CF bonds is followed (in the second step) by structural reorganization of the CHF(3) moiety, which leads to the contraction of the CH bond. It is thus clearly demonstrated that not only the spectral manifestation of H-bonding and improper H-bonding but also their nature differ.
Single crystal molecular structure and solution photophysical properties are reported for 1,3-diphenylisobenzofuran (1), of interest as a model compound in studies of singlet fission. For the ground state of 1 and of its radical cation (1(+*)) and anion (1(-*)), we report the UV-visible absorption spectra, and for neutral 1, also the magnetic circular dichroism (MCD) and the decomposition of the absorption spectrum into purely polarized components, deduced from fluorescence polarization. These results were used to identify a series of singlet excited states. For the first excited singlet and triplet states of 1, the transient visible absorption spectra, S(1) --> S(x) and sensitized T(1) --> T(x), and single exponential lifetimes, tau(F) = approximately 5.3 ns and tau(T) = approximately 200 micros, are reported. The spectra and lifetimes of S(1) --> S(0) fluorescence and sensitized T(1) --> T(x) absorption of 1 were obtained in a series of solvents, as was the fluorescence quantum yield, Phi(F) = 0.95-0.99. No phosphorescence has been detected. The first triplet excitation energy of solid 1 (11,400 cm(-1)) was obtained by electron energy loss spectroscopy, in agreement with previously reported solution values. The fluorescence excitation spectrum suggests an onset of a nonradiative channel at approximately 37,000 cm(-1). Excitation energies and relative transition intensities are in agreement with those of ab initio (CC2) calculations after an empirical 3000 cm(-1) adjustment of the initial state energy to correct differentially for a better quality description of the initial relative to the terminal state of an absorption transition. The interpretation of the MCD spectrum used the semiempirical PPP method, whose results for the S(0) --> S(x) spectrum require no empirical adjustment and are otherwise nearly identical with the CC2 results in all respects including the detailed nature of the electronic excitation. The ground state geometry of 1 was also calculated by the MP2, B3LYP, and CAS methods. The calculations provided a prediction of changes of molecular geometry upon excitation or ionization and permitted an interpretation of the spectra in terms of molecular orbitals involved. Computations suggest that 1 can exist as two nearly isoenergetic conformers of C(2) or C(s) symmetry. Linear dichroism measurements in stretched polyethylene provide evidence for their existence and show that they orient to different degrees, permitting a separation of their spectra in the region of the purely polarized first absorption band. Their excitation energies are nearly identical, but the Franck-Condon envelopes of their first transition differ to a surprising degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.