The paper deals with experimental research of the flow and dynamics of the blades in the last stage of a steam turbine with nominal output of 34 MW and a connected axial exhaust hood. The experiments were carried out on a turbine with relatively low inlet steam parameters “- 64 bars and 445 °C. It was possible to change the operating modes of the turbine during the course of measurement so that significant ventilation would be achieved in the last stage up to the point when aerodynamic throttling occurred in the last stage. In other words the turbine output varied from about 2 to 35 MW. The output of 2 MW was for the case of the island mode turbine operation. The experiments were carried out using static pressure taps and measurements of temperatures at the root and tip limiting wall. In addition to static pressure taps and temperature measurement, it was also possible to carry out probing by pneumatic probe with a diameter of 30 mm. Blade vibration monitoring sensors, so called last stage blade tip-timing, were also installed. The blade tip-timing acquisition hardware was used to monitor rotor blades tip amplitude. Due to the obtained experimental data, it was possible to verify the behaviour of the last stage and the connected exhaust hood for four measured variants. The courses of pressures and steam angles along the length of the LSB were determined. Furthermore, basic parameters of the last stage were determined, i.e. reactions of the stage, Mach and Reynolds numbers and values of pressure recovery coefficients. Based on experimental data the boundary conditions for CFD calculations were determined. Comparison of CFD calculations done for ventilation modes and for a nominal mode was also included. Another phenomenon which occurred during the probing of the flow parameters, particularly in ventilation modes, was the inability to determine parameters of steam due to low values of measured dynamic pressure in the vortex area at the root of the blade. The probe was able to detect dynamic pressure at the level of 50 Pa and more. In other words the transition point between backward and forward flows was identified. This limit point was used for further analysis of ventilation character of the steam flow depending on the ventilation coefficient c2x/u. where c2x is the average axial velocity at the LSB outlet, calculated from volumetric mass flow and u is LSB circumferential velocity calculated at LSB middle diameter. Due to the fact that it was also possible to measure vibration amplitudes of blades using the tip-timing method for a variety of modes, the relationships between pressure ratio over the tip and root of the last moving blade and vibration amplitude were also determined. This verified that the highest amplitude of blade tips occurred just when the compression of the medium on the blade tip was maximum, i.e. c2x/u = 0.05.
The 3000 rpm 48 inch blade for steam turbine has been developed with the application of new design features. The last stage moving blade was designed with integral cover, mid-span tie-boss connection, and fir-tree dovetail. Blades are continuously coupled by the blade untwist due to the centrifugal force, so vibration control and increased structural damping are provided. The last stage airfoil was optimized from view of minimization of its centrifugal force which helped to reach higher safety factors. The blade was well tuned in order to have eigen-frequencies safely away from possible excitation. Because of connection members, the number of the resonant vibration modes can be reduced by virtue of the vibration characteristics of the circumferentially continuous blades. In order to develop the 3000 rpm 48 inch blade, the latest analysis methods were applied to predict dynamic behavior of the bladed structure. Coupled rotor-blade analysis was also aim of the attention. To validate calculated results the verification measurement such as rotational vibration tests was carried out in the high-speed test rig. The test rotor was fitted with the actual full scale 48″ blades. Relation of the friction damping of the bladed structure on amount of excitation level was also monitored and evaluated.
This paper is the first of a two-part publication that aims to experimentally evaluate, simulate and compare the aerodynamic and mechanical damping for a last stage steam turbine rotor blade at part load operation. Resulting strong off-design partial load regimes expose the last stage moving blade (LSMB) to the possible onset of aero-elastic instabilities, such as stalled and un-stalled flutter. This interaction can lead to asynchronous blade vibrations and then the risk of blade failures for high cycle fatigue. In this framework, it is necessary to develop and validate new tools for extending operating ranges, controlling non-synchronous phenomenon and supporting the design of new flutter resistant LSMB. To this end, a 3-stage downscaled steam turbine with a snubbered LSMB was designed by Ansaldo Energia and tested in the T10MW test facility of Doosan Skoda Power R&D Department within the FlexTurbine European project. The turbine was operated in a wet steam environment at very low volume flow conditions simulating different part load regimes. The steady flow field throughout the LSMB was characterized and the occurrence of flutter was investigated by inducing the blade resonance through an AC magnet excitation and measuring the overall damping. The results presented in this paper indicate that the blade always operates over the flutter stability margin validating this new blade design. In the second part of this work, the mechanical and aerodynamic contribution to the damping will be separated in order to validate the aerodynamic damping prediction of an upgraded CFD tool, already adopted in the design phase of the blade at design point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.