Nanoscale zerovalent iron (nZVI) is commonly used in advanced groundwater remediation processes. Here, we present a combined experimental and computational approach to elucidate the mechanism and kinetics of the reaction of nZVI with water under anaerobic conditions, which represents the basic reaction controlling the stability of nZVI in groundwater. The reaction kinetics was monitored at temperatures of 25 and 80 °C by 57 Fe Mossbauer spectroscopy on frozen dispersion samples. The experimentally determined rate constant for reaction of nZVI with water at 25 °C was 1.14 × 10 −3 h −1 ; the activation barrier measured for 60 nm sized nanoparticles (ΔG ⧧ 298K (aq) = 26.3 kcal/mol) fits the range delineated by two limiting theoretical models from advanced quantum chemical calculations: rate-limiting activation barriers of 31.6 and 18.0 kcal/mol depending on the computational model, i.e., an iron atom and an infinite iron surface, respectively. The computations indicated a two-step reaction mechanism involving two one-electron transfer processes: the first can be described by the reaction Fe + H 2 O → HFeOH, which represents the rate-limiting step, and the second by HFeOH + H 2 O → Fe(OH) 2 + H 2 . At 25 °C, the reaction product was identified experimentally as Fe(OH) 2 , which forms flat layered sheets extensively overgrowing nZVI particles. At 80 °C, ferrous hydroxide undergoes secondary anaerobic transformation to magnetite (Fe 3 O 4 ).
We report the first example of arsenite and arsenate removal from water by incorporation of arsenic into the structure of nanocrystalline iron(III) oxide. Specifically, we show the capability to trap arsenic into the crystal structure of γ-Fe2O3 nanoparticles that are in situ formed during treatment of arsenic-bearing water with ferrate(VI). In water, decomposition of potassium ferrate(VI) yields nanoparticles having core-shell nanoarchitecture with a γ-Fe2O3 core and a γ-FeOOH shell. High-resolution X-ray photoelectron spectroscopy and in-field (57)Fe Mössbauer spectroscopy give unambiguous evidence that a significant portion of arsenic is embedded in the tetrahedral sites of the γ-Fe2O3 spinel structure. Microscopic observations also demonstrate the principal effect of As doping on crystal growth as reflected by considerably reduced average particle size and narrower size distribution of the "in-situ" sample with the embedded arsenic compared to the "ex-situ" sample with arsenic exclusively sorbed on the iron oxide nanoparticle surface. Generally, presented results highlight ferrate(VI) as one of the most promising candidates for advanced technologies of arsenic treatment mainly due to its environmentally friendly character, in situ applicability for treatment of both arsenites and arsenates, and contrary to all known competitive technologies, firmly bound part of arsenic preventing its leaching back to the environment. Moreover, As-containing γ-Fe2O3 nanoparticles are strongly magnetic allowing their separation from the environment by application of an external magnet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.