We study long chains of iterated weak * derived sets, that is, sets of all weak * limits of bounded nets, of subspaces with the additional property that the penultimate weak * derived set is a proper norm dense subspace of the dual. We extend the result of Ostrovskii and show that in the dual of any non-quasi-reflexive Banach space containing an infinite-dimensional subspace with separable dual, we can find for any countable successor ordinal α a subspace whose weak * derived set of order α is proper and norm dense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.