Storage of frozen fish brings about a decrease of extractability of myofibrillar proteins. There is also deterioration of the texture and functional properties of the flesh. In model systems, aggregation of myosin, actin, tropomyosin, and whole myofibrils have been described. These changes are caused by concurrent action of partial dehydration due to the freezing out of water, exposure of the proteins to inorganic salts which are concentrated in the remaining nonfrozen fluid, interactions with free fatty acids liberated from phospholipids and with lipid oxidation products, and cross-linking by formaldehyde produced in some species of fish as a result of enzymic decomposition of trimethylamine oxide. The extent of protein alterations increases with time and temperature of storage as well as with advanced disintegration of the tissues and intermixing of their components. The role played by the individual factors and the significance of different types of bonds, i.e., hydrophobic adherences, ionic bonds, and covalent cross-links in particular cases are not yet fully disclosed. Retardation of the deteriorative changes of proteins in frozen fish is possible by avoiding high storage temperatures and oxidation of lipids, removing hematin compounds and other constituents promoting cross-linking reactions, and by adding cryoprotectors like sugars, several organic acids, amino acids, or peptides.
Collagen in the muscles of fish constitutes the main component of the connective tissue membranes joining individual myotomes and is responsible for the integrity of the fillets. The content of collagen in fish muscles is from about 0.2 to 1.4% and in squid mantel about 2.6%. Fish and invertebrata collagens contain slightly more essential amino acids than intramuscular bovine connective tissue collagen. The invertebrata collagens are exceptionally rich in sugars linked mainly O-glycosidically to hydroxylysine residues. During maturation of fish the proportion of collagen to total protein in the muscles increases while the extent of crosslinking does not change significantly. The thermal properties of fish collagens depend significantly on the content of hydroxyproline and proline residues which in turn is correlated to the temperature of the habitat. Generally the shrinkage temperature of fish skin collagens is about 20 degrees C lower than that of mammalian hide collagens. In several species of fish the weakening of the connective tissues post mortem may lead to serious quality deterioration that manifests itself by disintegration of the fillets, especially under the strain of rough handling and of rigor mortis at ambient temperature. Thermal changes in collagen are the necessary result of the cooking of fish, squid, and minced fish products and contribute to the desirable texture of the meat. However, they may lead to serious losses during hot smoking due to a reduction in the breaking strength of the tissues when heating is conducted at high relative humidity. Because of the high viscosity of gelatinized collagen, it is not possible to concentrate the fish stickwaters, a proteinaceous byproduct of the fish meal industry, to more than 50% dry matter. Better knowledge of the contents and properties of fish collagens could be helpful in rationalizing many aspects of fish processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.