During an automatic power transmission line inspection, a large number of images are collected by unmanned aerial vehicles (UAVs) to detect existing defects in transmission line components, especially insulators. However, with twin insulator strings in the inspection images, when the umbrella skirts of the rear string are obstructed by the front string, defect detection becomes difficult. To solve this problem, we propose a method to detect self-shattering defects of insulators based on spatial features contained in images. Firstly, the images are segmented according to the particular color features of glass insulators, and the main axes of insulator strings in the images are adjusted to the horizontal direction. Then, the connected regions of insulators in the images are marked. After that, the vertical lengths of the regions, the number of insulator pixels in the regions, as well as the horizontal distances between two adjacent connected regions are selected as spatial features, based on which defect discriminants are formulated. Finally, experiments are performed using the proposed formula to detect self-shattering defects in the insulators, using the spatial distribution of the connected regions to locate the defects. The experiment results indicate that the proposed method has good detection accuracy and localization precision.
As the main energy source for thermal power generation, coal generates a large amount of NOx during its incineration in boilers, and excessive NOx emissions can cause serious pollution to the air environment. Selective catalytic reduction denitrification (SCR) selects the optimal amount of ammonia to be injected for denitrification based on the measurement of NOX concentration by the automatic flue gas monitoring system. Since the automatic flue gas monitoring system has a large delay in measurement, it cannot accurately reflect the real-time changes of NOx concentration at the SCR inlet when the unit load fluctuates, leading to problems such as ammonia escape and NOX emission exceeding the standard. In response to these problems, this paper proposes an SCR inlet NOx concentration prediction algorithm based on BMIFS-LSTM. An improved mutual information feature selection algorithm (BMIFS) is used to filter out the auxiliary variables with maximum correlation and minimum redundancy with NOx concentration, and reduce the coupling and dimensionality among the variables in the data set. The dominant and auxiliary variables are then fed together into a long short-term memory neural network (LSTM) to build a prognostic model. Simulation experiments are conducted using historical operation data of a 300 MW thermal power unit. The experimental results show that the algorithm in this paper reduces the average relative error by 3.45% and the root mean square error by 1.50 compared with the algorithm without auxiliary variable extraction, which can accurately reflect the real-time changes of NOx concentration at the SCR inlet, solve the problem of delay in NOx concentration measurement, and reduce the occurrence of atmospheric pollution caused by excessive NOx emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.