The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce the computational cost of BN due to much smaller sizes of local GRNs, but also identify the directions of the regulations.
With the advent of next-generation sequencing technology, it has become convenient and cost efficient to thoroughly characterize the microbial diversity and taxonomic composition in various environmental samples. Millions of sequencing data can be generated, and how to utilize this enormous sequence resource has become a critical concern for microbial ecologists. One particular challenge is the OTUs (operational taxonomic units) picking in 16S rRNA sequence analysis. Lucky, this challenge can be directly addressed by sequence clustering that attempts to group similar sequences. Therefore, numerous clustering methods have been proposed to help to cluster 16S rRNA sequences into OTUs. However, each method has its clustering mechanism, and different methods produce diverse outputs. Even a slight parameter change for the same method can also generate distinct results, and how to choose an appropriate method has become a challenge for inexperienced users. A lot of time and resources can be wasted in selecting clustering tools and analyzing the clustering results. In this study, we introduced the recent advance of clustering methods for OTUs picking, which mainly focus on three aspects: (i) the principles of existing clustering algorithms, (ii) benchmark dataset construction for OTU picking and evaluation metrics, and (iii) the performance of different methods with various distance thresholds on benchmark datasets. This paper aims to assist biological researchers to select the reasonable clustering methods for analyzing their collected sequences and help algorithm developers to design more efficient sequences clustering methods.
design a novel graph-theoretic algorithm called CTCA to estimate the ability of a given network to control targets by choosing driver nodes from the set of constrained control nodes. We extensively evaluate the CTC of numerous real complex networks. The results indicate that biological networks with a higher average degree are easier to control than biological networks with a lower average degree, while electronic networks with a lower average degree are easier to control than web networks with a higher average degree. We also show that our CTCA can more eciently produce driver nodes for target-controlling the networks than existing state-of-the-art methods. Moreover, we use our CTCA to analyze two expert-curated bio-molecular networks and compare to other state-of-the-art methods. The results illustrate that our CTCA can eciently identify proven drug targets and new potentials, according to the constrained controllability of those biological networks.
BackgroundPacBio sequencing platform offers longer read lengths than the second-generation sequencing technologies. It has revolutionized de novo genome assembly and enabled the automated reconstruction of reference-quality genomes. Due to its extremely wide range of application areas, fast sequencing simulation systems with high fidelity are in great demand to facilitate the development and comparison of subsequent analysis tools. Although there are several available simulators (e.g., PBSIM, SimLoRD and FASTQSim) that target the specific generation of PacBio libraries, the error rate of simulated sequences is not well matched to the quality value of raw PacBio datasets, especially for PacBio’s continuous long reads (CLR).ResultsBy analyzing the characteristic features of CLR data from PacBio SMRT (single molecule real time) sequencing, we developed a new PacBio sequencing simulator (called NPBSS) for producing CLR reads. NPBSS simulator firstly samples the read sequences according to the read length logarithmic normal distribution, and choses different base quality values with different proportions. Then, NPBSS computes the overall error probability of each base in the read sequence with an empirical model, and calculates the deletion, substitution and insertion probabilities with the overall error probability to generate the PacBio CLR reads. Alignment results demonstrate that NPBSS fits the error rate of the PacBio CLR reads better than PBSIM and FASTQSim. In addition, the assembly results also show that simulated sequences of NPBSS are more like real PacBio CLR data.ConclusionNPBSS simulator is convenient to use with efficient computation and flexible parameters setting. Its generating PacBio CLR reads are more like real PacBio datasets.Electronic supplementary materialThe online version of this article (10.1186/s12859-018-2208-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.