In septic acute kidney injury (SAKI), the positive feedback between damaged mitochondria and accumulation of reactive oxygen species results in cell and tissue damage through multiple mechanisms. Removing the damaged mitochondria or neutralizing the reactive oxygen species has been considered beneficial to alleviating cell damage. The antioxidant Procyanidin B2 has been reported to inhibits reactive oxygen species and thereby reduces cell injury. However, it is unclear whether this effect is associated with clearance of damaged mitochondria. Here, we evaluated the efficacy of procyanidin B2 on SAKI, and focused on its effects on mitochondrial dynamics and removing damaged mitochondria via mitophagy. The results showed that the renal function, renal tubular cell vacuolization and oxidative stress were decreased in SAKI mice treated with procyanidin B2, moreover, skewed mitochondrial fusion/fission, mitochondrial mediated apoptosis and impaired mitophagy were improved in SAKI mice treated with procyanidin B2. In mechanism, the improvement of procyanidin B2 on mitochondrial dynamics were associated with increased nuclear translocation of the transcription factor, Nrf2. In summary, our findings highlighted that the protective efficacy of procyanidin B2 in reducing cellular damage in SAKI, and mechanisms improving mitochondrial dynamics and quality control at least in part by promoting Nrf2 translocation into the nucleus.
ObjectiveLupus nephritis (LN) is a major complication and cause of death among patients with SLE. This research used in vivo and in vitro experiments to explore the therapeutic potential of metformin in kidney injury from LN-induced inflammation.MethodsIn vivo study, 8-week-old MRL/MpJ-Faslpr/J (MRL/lpr) mice were randomly divided into two groups (n=12 each): daily administration of 0.3 mg/mL metformin in drinking water and control (water only). Body weight and urinary samples were measured biweekly. Mice were sacrificed after 8-week treatment to harvest serum, lymph nodes, spleen and kidneys. In vitro study, human kidney-2 (HK-2) cells were pretreated with 1 mM metformin for 1 hour and then stimulated with 20 µg/mL lipopolysaccharides (LPS) or 10 ng/mL tumour necrosis factor-α (TNF-α) for another 48 hours. Protein was collected for subsequent analysis.ResultsWe found that metformin administration improved renal function in MRL/lpr lupus-prone mice, measured by decreased urea nitrogen and urinary proteins. Metformin reduced immunoglobulin G and complement C3 deposition in glomeruli. The treatment also downregulated systemic and renal inflammation, as seen in decreased renal infiltration of F4/80-positive macrophages and reduced splenic and renal MCP-1 (monocyte chemoattractant protein-1) and TNF-α, and renal IL-1β (interleukin 1β) expression. Metformin administration decreased renal expression of necroptosis markers p-RIPK1 (phosphorylated receptor-interacting protein kinase 1) and p-MLKL, along with tubular injury marker KIM-1 (kidney injury molecule-1) in lupus mice. In addition, metformin alleviated the necroptosis of HK-2 cells stimulated by LPS and TNF-α, evidencing by a decrease in the expression of necroptosis markers p-RIPK1, p-RIPK3 and p-MLKL, and the inflammasome-related markers NLRP3 (NLR family pyrin domain containing 3), ASC (apoptosis-associated speck-like protein containing a CARD), caspase-1. Mechanistically, metformin treatment upregulated p-AMPK (phosphorylated AMP-activated protein kinase) and downregulated p-STAT3 (phosphorylated signal transducer and activator of transcription 3) expression in the kidneys. Moreover, AMPKα2 knockdown abolished the protective effects of metformin in vitro.ConclusionsMetformin alleviated kidney injury in LN though suppressing renal necroptosis and inflammation via the AMPK/STAT3 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.