Summary After an infection, the immune system generates long-lived memory lymphocytes whose increased frequency and altered state of differentiation enhance host defense against re-infection. Recently, the spatial distribution of memory cells was found to contribute to their protective function. Effector memory CD8+ T cells reside in peripheral tissue sites of initial pathogen encounter, in apparent anticipation of re-infection. Here we show that within lymph nodes (LN), memory CD8+ T cells were concentrated near peripheral entry portals of lymph-borne pathogens, promoting rapid engagement of infected sentinel macrophages. A feed-forward CXCL9-dependent circuit provided additional chemotactic cues that further increase local memory cell density. Memory CD8+ T cells also produced effector responses to local cytokine triggers, but their dynamic behavior differed from that seen following antigen recognition. These data reveal the distinct localization and dynamic behavior of naive vs. memory T cells within LN and how these differences contribute to host defense.
We examined differences in cerebral blood flow (CBF) measured by Arterial Spin Labeled perfusion MRI (ASL MRI) across the continuum from cognitively normal (CN) older adults to mild Alzheimer's Disease (AD) using data from the multi-site Alzheimer's Disease Neuroimaging Initiative (ADNI). Measures of CBF, in a predetermined set of regions (meta-ROI), and hippocampal volume were compared between CN (n = 47), patients with early and late Mild Cognitive Impairment [EMCI (n = 32), LMCI (n = 35)], and AD (n = 15). Associations between these measures and disease severity, assessed by Clinical Dementia Rating scale sum of boxes (CDR SB), were also assessed. Mean meta-ROI CBF was associated with group status and significant hypoperfusion was observed in LMCI and AD relative to CN. Hippocampal volume was associated with group status, but only AD patients had significantly smaller volumes than the CN. When examining the relationship between these measures and disease severity, both were significantly associated with CDR SB and appeared to provide independent prediction of status. In light of the tight link between CBF and metabolism, ASL MRI represents a promising functional biomarker for early diagnosis and disease tracking in AD and this study is the first to demonstrate the feasibility in a multi-site context in this population. Combining functional and structural measures, which can be acquired in the same scanning session, appears to provide additional information about disease severity relative to either measure alone.
Macrophages play a critical role in the innate immune response to pathogen infection, but few tools exist for systematic dissection of these responses using modern genome-wide perturbation methods. To develop an assay platform for high-throughput analysis of macrophage activation by pathogenic stimuli, we generated reporter systems in human and mouse macrophages with dynamic readouts for NF-κB and/or TNF-α responses. These reporter cells show responsiveness to a broad range of TLR ligands and to gram-negative bacterial infection. There are significant challenges to the use of RNAi in innate immune cells, including efficient small RNA delivery and non-specific immune responses to dsRNA. To permit the interrogation of the macrophage pathogen response pathways with RNAi, we employed the stably expressed reporter genes to develop efficient siRNA delivery protocols for maximal target gene silencing with minimal activation of the innate macrophage response to nucleic acids. We demonstrate the utility of these macrophage cell systems for siRNA screening of pathogen responses by targeting components of the human and mouse TLR pathways, and observe species-specific perturbation of signaling and cytokine responses. Our approach to reporter cell development and siRNA delivery optimization provides an experimental paradigm with significant potential for developing genetic screening platforms in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.