In the design of electromagnetic (EM) wave absorbing materials, it is still a great challenge to optimize the relationship between the attenuation capability and impedance matching synergistically. Herein, a 3D porous MoS 2 /MXene hybrid aerogel architecture with conformal heterogeneous interface has been built by atomic layer deposition (ALD) based on specific porous templates to optimize the microwave absorption (MA) performance comprehensively. The original porous structure of pristine Ti 3 C 2 T x aerogel used as templates can be preserved well during ALD fabrication, which prolongs the reflection and scattering path and ameliorates the dielectric loss. Meanwhile, plenty of heterointerfaces between MoS 2 and Ti 3 C 2 T x have been fabricated based on conformally ALD-deposited MoS 2 with controlled thickness on the porous surfaces of the templates, which can effectively optimize the impedance matching and transform its response to EM waves from shielding into absorbing. Moreover, the interaction between the attenuation capability and impedance matching can also be modulated by the number of ALD cycle in MoS 2 fabrication. After optimization, MoS 2 /MXene hybrid aerogel obtained under 300 ALD cycles shows a minimum reflection loss of −61.65 dB at the thickness of 4.53 mm. In addition, its preferable lightweight, high surface area, mechanical, and hydrophobicity properties will also be conducive to further practical applications.
The invention of the maser stimulated revolutionary technologies such as lasers and atomic clocks. Yet, realizations of masers are still limited; in particular, the physics of masers remains unexplored in periodically driven (Floquet) systems, which are generally defined by time-periodic Hamiltonians and enable observation of many exotic phenomena such as time crystals. Here, we investigate the Floquet system of periodically driven 129Xe gas under damping feedback and unexpectedly observe a multimode maser that oscillates at frequencies of transitions between Floquet states. Our findings extend maser techniques to Floquet systems and open avenues to probe Floquet phenomena unaffected by decoherence, enabling a previously unexplored class of maser sensors. As a first application, our maser offers the capability of measuring low-frequency (1 to 100 mHz) magnetic fields with subpicotesla-level sensitivity, which is substantially better than state-of-the-art magnetometers and can be applied to, for example, ultralight dark matter searches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.